Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Synth Biol ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548673

RESUMO

Antisense oligonucleotide (ASO)-mediated gene silencing has broad applications, spanning from biomedicine to agriculture, involving molecular biology, synthetic biology, and genetic manipulation. This research harnessed nanotechnology to augment ASO-mediated gene silencing, introducing a remotely switchable gene expression system for precise temporal control. We targeted lipid biosynthesis and accumulation enhancement in the photosynthetic eukaryote Chlamydomonas reinhardtii. Gold nanoparticles (AuNPs) transported double-stranded DNA (dsDNA), forming dsDNA-AuNP complexes. These complexes comprised 3'-thiolated sense strands attached to AuNPs and fluorescent antisense oligonucleotides. To avoid harmful laser effects on cells, we adopted a light-emitting diode (LED). Confocal microscopy confirmed dsDNA-AuNP internalization in C. reinhardtii. LED-triggered antisense release led to an 83% decrease in Citrate Synthase 2 (CIS 2) expression. Thiolated sense strand attachment postillumination inhibited antisense reannealing, enhancing gene silencing. This led to significant lipid body accumulation in cells, verified through fluorometric and fluorescence microscopy. This union of nanotechnology and ASO-mediated silencing provides gene regulation opportunities across sectors like biomedicine and agriculture. The system's remote switching capability underscores its potential in synthetic biology and genetic engineering. Our findings substantiate the utility of this approach for enhancing lipid biosynthesis in C. reinhardtii but also underscores its broader applicability to other organisms, fostering the development of novel solutions for pressing global challenges in energy, agriculture, and healthcare.

2.
ACS Omega ; 9(10): 11562-11573, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38497015

RESUMO

As the global urgency for effective antimicrobial agents intensifies, this work harnesses the widely demonstrated antimicrobial activity of silver nanoparticles (Ag-NPs) and proposes alternative synthesis approaches to metal-organic hybrid systems with antimicrobial activity. In this study, the proposed synthesis route involves decorating metallic nanoparticles into organic substrates without previous doping. The synthesis simultaneously uses polyethylene glycol for three crucial purposes: (1) acting as a mild reducing agent to generate Ag-NPs with a spherical shape and diameters ranging from 10 to just over 20 nm, (2) functioning as a dispersing agent for flakes of commercial nanostructured carbon supports, including reduced graphene oxide (rGO, ID-nano), and commercial carbon nanoplatelets from Sigma-Aldrich (GNPs, Sigma-Aldrich), and (3) serving as a promoter for the homogeneous anchoring of Ag-NPs in the carbon lattice without altering the conformation of the carbon lattice. This intricate interaction involves the π-orbitals from the sp2 hybridization honeycomb and the d-orbitals from the Ag-NPs, leading to the constructive rehybridization of rGO and GNPs. In our study, Ag-NPs/rGO are compared with a support lacking oxygenated groups in the lattice, such as commercial GNPs (Sigma-Aldrich), to produce Ag-NPs/GNPs. This comparison maintains constructive sp2 rehybridization, preserving the characteristic properties of rGO (ID-nano) and graphene nanoplatelets, including commercial GNPs (Sigma-Aldrich). Notably, oxygenated groups from rGO exhibit greater availability for exchanging oxo and hydroxy defects for Ag-NPs compared with GNPs (Sigma-Aldrich). The resulting Ag-NPs/rGO and Ag-NPs/GNP systems are thoroughly physicochemically characterized, employing techniques such as Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray diffraction, scanning electron microscopy and energy dispersive X-ray spectroscopy, high-resolution transmission electron microscopy, and scanning transmission electron microscopy, revealing the successful integration of Ag-NPs with minimal alteration to the carbon lattice. Subsequent antimicrobial evaluation against Escherichia coli (E. coli) demonstrates significant activity, with Ag-NPs/rGO and Ag-NPs/GNPs registering similar minimum inhibitory concentrations of 50 µg mL-1. This study underscores the potential of our metal-organic hybrid systems as antimicrobial agents and provides insights into the constructive rehybridization process, paving the way for diverse applications in the biomedical and environmental fields.

4.
Sci Rep ; 13(1): 21519, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057583

RESUMO

The need for an alternative treatment to fight infectious diseases caused by antibiotic-resistant bacteria is increasing. A possible way to overcome bacterial resistance to antibiotics is by reintroducing commonly used antibiotics with a sensitizer capable of enhancing their antimicrobial effect in resistant bacteria. Here, we use a composite composed of exopolysaccharide capped-NiO NPs, with antimicrobial effects against antibiotic-resistant Gram-positive and Gram-negative bacteria. It potentiated the antimicrobial effects of four different antibiotics (ampicillin, kanamycin, chloramphenicol, and ciprofloxacin) at lower concentrations than their minimal inhibitory concentrations. We observed that the Ni-composite synergistically enhanced, fourfold, the antibacterial effect of kanamycin and chloramphenicol against multidrug-resistant Staphylococcus aureus and Pseudomonas aeruginosa, as well as ampicillin against multidrug-resistant Staphylococcus aureus, and ciprofloxacin against multidrug-resistant Pseudomonas aeruginosa by eightfold. We also found that Ni-composite could not inhibit biofilm synthesis on the tested bacterial strains. Our results demonstrated the possibility of using metal nanoparticles, like NiO, as a sensitizer to overcome bacterial antibiotic resistance.


Assuntos
Nanopartículas Metálicas , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/farmacologia , Níquel/farmacologia , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Cloranfenicol/farmacologia , Ciprofloxacina/farmacologia , Ampicilina/farmacologia , Canamicina/farmacologia , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa
5.
Front Bioeng Biotechnol ; 11: 1193424, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37799812

RESUMO

The burgeoning human population has resulted in an augmented demand for raw materials and energy sources, which in turn has led to a deleterious environmental impact marked by elevated greenhouse gas (GHG) emissions, acidification of water bodies, and escalating global temperatures. Therefore, it is imperative that modern society develop sustainable technologies to avert future environmental degradation and generate alternative bioproduct-producing technologies. A promising approach to tackling this challenge involves utilizing natural microbial consortia or designing synthetic communities of microorganisms as a foundation to develop diverse and sustainable applications for bioproduct production, wastewater treatment, GHG emission reduction, energy crisis alleviation, and soil fertility enhancement. Microalgae, which are photosynthetic microorganisms that inhabit aquatic environments and exhibit a high capacity for CO2 fixation, are particularly appealing in this context. They can convert light energy and atmospheric CO2 or industrial flue gases into valuable biomass and organic chemicals, thereby contributing to GHG emission reduction. To date, most microalgae cultivation studies have focused on monoculture systems. However, maintaining a microalgae monoculture system can be challenging due to contamination by other microorganisms (e.g., yeasts, fungi, bacteria, and other microalgae species), which can lead to low productivity, culture collapse, and low-quality biomass. Co-culture systems, which produce robust microorganism consortia or communities, present a compelling strategy for addressing contamination problems. In recent years, research and development of innovative co-cultivation techniques have substantially increased. Nevertheless, many microalgae co-culturing technologies remain in the developmental phase and have yet to be scaled and commercialized. Accordingly, this review presents a thorough literature review of research conducted in the last few decades, exploring the advantages and disadvantages of microalgae co-cultivation systems that involve microalgae-bacteria, microalgae-fungi, and microalgae-microalgae/algae systems. The manuscript also addresses diverse uses of co-culture systems, and growing methods, and includes one of the most exciting research areas in co-culturing systems, which are omic studies that elucidate different interaction mechanisms among microbial communities. Finally, the manuscript discusses the economic viability, future challenges, and prospects of microalgal co-cultivation methods.

6.
Microb Cell Fact ; 22(1): 61, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37004064

RESUMO

Research development in the precise control of gene expression in plant cells is an emerging necessity that would lead to the elucidation of gene function in these biological systems. Conventional gene-interfering techniques, such as micro-RNA and short interfering RNA, have limitations in their ability to downregulate gene expression in plants within short time periods. However, nanotechnology provides a promising new avenue with new tools to overcome these challenges. Here, we show that functionalized gold nanoparticles, decorated with sense and antisense oligonucleotides (FANSAO), can serve as a remote-control optical switch for gene interference in photosynthetic plant cells. We demonstrate the potential of employing LEDs as optimal light sources to photothermally dehybridize the oligonucleotides on the surface of metallic nanostructures, consequently inducing regulation of gene expression in plant cells. We show the efficiency of metallic nanoparticles in absorbing light from an LED source and converting it to thermal energy, resulting in a local temperature increase on the surface of the gold nanoparticles. The antisense oligonucleotides are then released due to the opto-thermal heating of the nanobiosystem composed of the metallic nanoparticles and the sense-antisense oligonucleotides. By applying this approach, we silenced the Carnitine Acyl Carnitine Translocase genes at 90.7%, resulting in the accumulation of lipid bodies in microalgae cells. These results exhibit the feasibility of using functionalized gold nanoparticles with sense and antisense oligonucleotides to enhance nucleic acid delivery efficiency and, most importantly, allow for temporal control of gene silencing in plant cells. These nanobiosystems have broad applications in the development and biosynthesis of biofuels, pharmaceuticals, and specialized chemicals.


Assuntos
Chlamydomonas reinhardtii , Nanopartículas Metálicas , Nanopartículas Metálicas/química , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Ouro/química , Inativação Gênica , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/metabolismo , Lipídeos
7.
Antibiotics (Basel) ; 12(3)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36978442

RESUMO

The present study centers on the synthesis of ultra-small silver nanoparticles (AgNPs) with antibacterial properties using citrus peel residues (orange, lemon, and grapefruit) as reducing and stabilizing agents, and on assessing their antibacterial activity against multidrug-resistant clinical Staphylococcus aureus. The synthesized AgNPs were analyzed by various techniques, including UV-Vis spectroscopy, SAED, TEM, XRD, FTIR, and Raman. The results demonstrate the formation of ultra-small, monodisperse, quasi-spherical AgNPs with an average particle size of 2.42 nm for AgNPs produced with mixed extracts. XRD analysis indicated that the AgNPs have a crystal size of 9.71 to 16.23 nm. The AgNPs exhibited potent inhibitory activity against resistant S. aureus, with a minimum inhibitory concentration (MIC) of 15.625 to 62.50 ppm. The findings suggest that the ultra-small nanometer size of the AgNPs could be attributed to the synthesis method that employs ambient conditions and the presence of polyphenolic compounds from citrus peel. Consequently, AgNPs obtained through sustainable green synthesis hold significant potential in combating clinical multi-resistant bacterial strains that are challenging to treat and eradicate. This approach also contributes to the revaluation of citrus residues in the region, which is an ongoing environmental issue today.

8.
Biotechnol Adv ; 65: 108127, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36924811

RESUMO

Different from other aerobic microorganisms that oxidise carbon sources to water and carbon dioxide, Gluconobacter catalyses the incomplete oxidation of various substrates with regio- and stereoselectivity. This ability, as well as its capacity to release the resulting products into the reaction media, place Gluconobacter as a privileged member of a non-model microorganism class that may boost industrial biotechnology. Knowledge of new technologies applied to Gluconobacter has been piling up in recent years. Advancements in its genetic modification, application of immobilisation tools and careful designs of the transformations, have improved productivities and stabilities of Gluconobacter strains or enabled new bioconversions for the production of valuable marketable chemicals. In this work, the latest advancements applied to Gluconobacter-catalysed biotransformations are summarised with a special focus on recent available tools to improve them. From genetic and metabolic engineering to bioreactor design, the most recent works on the topic are analysed in depth to provide a comprehensive resource not only for scientists and technologists working on/with Gluconobacter, but for the general biotechnologist.


Assuntos
Gluconobacter oxydans , Gluconobacter , Gluconobacter/genética , Gluconobacter/metabolismo , Gluconobacter oxydans/genética , Gluconobacter oxydans/metabolismo , Biotecnologia , Catálise , Biotransformação
9.
Crit Rev Biotechnol ; 43(4): 594-612, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35369831

RESUMO

Cassava (Manihot esculenta) is a major staple food and the world's fourth source of calories. Biotechnological contributions to enhancing this crop, its advances, and present issues must be assessed regularly. Functional genomics, genomic-assisted breeding, molecular tools, and genome editing technologies, among other biotechnological approaches, have helped improve the potential of economically important crops like cassava by addressing some of its significant constraints, such as nutrient deficiency, toxicity, poor starch quality, disease susceptibility, low yield capacity, and postharvest deterioration. However, the development, improvement, and subsequent acceptance of the improved cultivars have been challenging and have required holistic approaches to solving them. This article provides an update of trends and gaps in cassava biotechnology, reviewing the relevant strategies used to improve cassava crops and highlighting the potential risk and acceptability of improved cultivars in Southern Africa.


Assuntos
Manihot , Manihot/genética , Biotecnologia , África Austral , Verduras , Produtos Agrícolas/genética
10.
Antibiotics (Basel) ; 11(6)2022 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-35740200

RESUMO

Since the discovery of antibiotics, humanity has been able to cope with the battle against bacterial infections. However, the inappropriate use of antibiotics, the lack of innovation in therapeutic agents, and other factors have allowed the emergence of new bacterial strains resistant to multiple antibiotic treatments, causing a crisis in the health sector. Furthermore, the World Health Organization has listed a series of pathogens (ESKAPE group) that have acquired new and varied resistance to different antibiotics families. Therefore, the scientific community has prioritized designing and developing novel treatments to combat these ESKAPE pathogens and other emergent multidrug-resistant bacteria. One of the solutions is the use of combinatorial therapies. Combinatorial therapies seek to enhance the effects of individual treatments at lower doses, bringing the advantage of being, in most cases, much less harmful to patients. Among the new developments in combinatorial therapies, nanomaterials have gained significant interest. Some of the most promising nanotherapeutics include polymers, inorganic nanoparticles, and antimicrobial peptides due to their bactericidal and nanocarrier properties. Therefore, this review focuses on discussing the state-of-the-art of the most significant advances and concludes with a perspective on the future developments of nanotherapeutic combinatorial treatments that target bacterial infections.

11.
Microb Cell Fact ; 21(1): 96, 2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35643468

RESUMO

Low-cost substrates are an exciting alternative for bioprocesses; however, their complexity can affect microorganism metabolism with non-desirable outcomes. This work evaluated banana peel extract (BPE) as a growth medium compared to commercial Yeast-Malt (YM) broth in the native and non-conventional yeast Rhodotorula mucilaginosa UANL-001L. The production of carotenoids, fatty acids, and exopolysaccharides (EPS) was also analyzed. Biomass concentration (3.9 g/L) and growth rate (0.069 g/h) of Rhodotorula mucilaginosa UANL-001L were obtained at 200 g/L of BPE. Yields per gram of dry biomass for carotenoids (317 µg/g) and fatty acids (0.55 g/g) showed the best results in 150 g/L of BPE, while 298 µg/g and 0.46 mg/g, respectively, were obtained in the YM broth. The highest yield of EPS was observed in 50 g/L of BPE, a two-fold increase (160.1 mg/g) compared to the YM broth (76.3 mg/g). The fatty acid characterization showed that 100 g/L of BPE produced 400% more unsaturated compounds (e.g., oleic and ricinoleic acid) than the YM broth. Altogether, these results indicate that BPE is a suitable medium for producing high-value products with potential industrial applications.


Assuntos
Musa , Rhodotorula , Carotenoides/metabolismo , Meios de Cultura/metabolismo , Ácidos Graxos/metabolismo , Rhodotorula/metabolismo , Leveduras
12.
Front Bioeng Biotechnol ; 10: 869206, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35600895

RESUMO

With the increase in clinical cases of bacterial infections with multiple antibiotic resistance, the world has entered a health crisis. Overuse, inappropriate prescribing, and lack of innovation of antibiotics have contributed to the surge of microorganisms that can overcome traditional antimicrobial treatments. In 2017, the World Health Organization published a list of pathogenic bacteria, including Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Escherichia coli (ESKAPE). These bacteria can adapt to multiple antibiotics and transfer their resistance to other organisms; therefore, studies to find new therapeutic strategies are needed. One of these strategies is synthetic biology geared toward developing new antimicrobial therapies. Synthetic biology is founded on a solid and well-established theoretical framework that provides tools for conceptualizing, designing, and constructing synthetic biological systems. Recent developments in synthetic biology provide tools for engineering synthetic control systems in microbial cells. Applying protein engineering, DNA synthesis, and in silico design allows building metabolic pathways and biological circuits to control cellular behavior. Thus, synthetic biology advances have permitted the construction of communication systems between microorganisms where exogenous molecules can control specific population behaviors, induce intracellular signaling, and establish co-dependent networks of microorganisms.

14.
Biotechnol Appl Biochem ; 69(4): 1373-1382, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34081352

RESUMO

The rise of methicillin-resistant Staphylococcus aureus (MRSA) infections has gained concern throughout the world over the past decades. Alternative therapeutic agents to antibiotics are rapidly growing to impede the proliferation of MRSA-caused infections. Lately, synthetic biology techniques have developed whole-cell biosensors by designing gene circuitry capable of sensing quorum-sensing (QS) molecules of pathogens and triggering expression of an antimicrobial moiety that kills MRSA and therefore prevents its further proliferation. Here, an E. coli was engineered in silico to act as a whole-cell biosensor that senses QS molecules from MRSA and triggers the expression of a bacteriocin that kills MRSA. To achieve this functionality, biosensor and bacteriocin modules were constructed and assembled into a vector. Both modules were codon-optimized to increase the yield production of the recombinant proteins. We then demonstrate in silico that the construction of a dual biosensor-killer plasmid, which holds two genetical modules known as biosensor and bacteriocin modules, enables the recombinant host to sense QS molecules from MRSA. Our designed whole-cell biosensor demonstrates in silico its ability to produce and secrete the bacteriocin as a function of the external concentration of autoinducer peptide from MRSA. These in silico results unravel the possibility of designing antimicrobial smarter therapeutics against resistant pathogens.


Assuntos
Bacteriocinas , Técnicas Biossensoriais , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Antibacterianos/farmacologia , Bacteriocinas/genética , Bacteriocinas/farmacologia , Escherichia coli , Humanos , Testes de Sensibilidade Microbiana
15.
IEEE Trans Nanobioscience ; 21(1): 86-88, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34757910

RESUMO

The 2nd edition of the International Congress on NanoBioEngineering (CINBI2020) is the anchor academic event of the Research Center on Biotechnology and Nanotechnology (CIByN). The CINBI2020 was organized by the Universidad Autonoma de Nuevo Leon through the School of Chemical Sciences and was held from October 26 to 30 at the virtual facilities of the CIByN in Monterrey, Mexico. Just as its 1st edition, the CINBI2020 allowed for the fostering of interactions among scientists, engineers, and medical researchers and served as a platform to discuss the advances and future applications of nanobioengineering research. Seventeen world-renowned keynote speakers from nanotechnology, biotechnology, engineering, and other interdisciplinary fields participated in the virtual 2nd International Congress on NanoBioEngineering 2020. Furthermore, the congress included an International Discussion Forum that focused on the advances and importance of nanobioengineering in the development of technology and the tools that it will provide us to solve the global problems that society currently faces. This forum was highly relevant as it included participants of international stature from the academic (Universidad Autonoma Metropolitana, the Universidad Autonóma de Nuevo León, the Universidad de Buenos Aires, and the University of Edinburgh), industrial (a representative from the company Nanomateriales), and governmental sectors (the Nuevo León Nanotechnology Cluster and the Nuevo León Biotechnology Cluster). The CINBI2020 registered 622 participants (291 men and 331 women), representing 60 academic institutions from 29 countries. It was sponsored by renowned scientific journals (including the IEEE Transactions on Nanobioscience), the government (Consejo Nacional de Ciencia y Tecnología, Grant 311486, from Mexico), and the private sector.


Assuntos
Bioengenharia , Nanotecnologia , Humanos
16.
Pharmaceutics ; 15(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36678634

RESUMO

With the spread of multi-drug-resistant (MDR) bacteria and the lack of effective antibiotics to treat them, developing new therapeutic methods and strategies is essential. In this study, we evaluated the antibacterial and antibiofilm activity of different formulations composed of ibuprofen (IBP), acetylsalicylic acid (ASA), and dexamethasone sodium phosphate (DXP) in combination with ciprofloxacin (CIP), gentamicin (GEN), cefepime (FEP), imipenem (IPM), and meropenem (MEM) on clinical isolates of Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa) as well as the transcription levels of biofilm-associated genes in the presence of sub-MICs of IBP, ASA, and DXP. The minimal inhibitory concentrations (MICs), minimal biofilm inhibitory concentrations (MBICs), and minimum biofilm eradication concentrations (MBECs) of CIP, GEN, FEP, IPM, and MEM with/without sub-MICs of IBP (200 µg/mL), ASA (200 µg/mL), and DXP (500 µg/mL) for the clinical isolates were determined by the microbroth dilution method. Quantitative real-time-PCR (qPCR) was used to determine the expression levels of biofilm-related genes, including icaA in S. aureus and algD in P. aeruginosa at sub-MICs of IBP, ASA, and DXP. All S. aureus isolates were methicillin-resistant S. aureus (MRSA), and all P. aeruginosa were resistant to carbapenems. IBP decreased the levels of MIC, MBIC, and MBEC for all antibiotic agents in both clinical isolates, except for FEP among P. aeruginosa isolates. In MRSA isolates, ASA decreased the MICs of GEN, FEP, and IPM and the MBICs of IPM and MEM. In P. aeruginosa, ASA decreased the MICs of FEP, IPM, and MEM, the MBICs of FEP and MEM, and the MBEC of FEP. DXP increased the MICs of CIP, GEN, and FEP, and the MBICs of CIP, GEN, and FEP among both clinical isolates. The MBECs of CIP and FEP for MRSA isolates and the MBECs of CIP, GEN, and MEM among P. aeruginosa isolates increased in the presence of DXP. IBP and ASA at 200 µg/mL significantly decreased the transcription level of algD in P. aeruginosa, and IBP significantly decreased the transcription level of icaA in S. aureus. DXP at 500 µg/mL significantly increased the expression levels of algD and icaA genes in S. aureus and P. aeruginosa isolates, respectively. Our findings showed that the formulations containing ASA and IBP have significant effects on decreasing the MIC, MBIC, and MBEC levels of some antibiotics and can down-regulate the expression of biofilm-related genes such as icaA and algD. Therefore, NSAIDs represent appropriate candidates for the design of new antibacterial and antibiofilm therapeutic formulations.

17.
Pathogens ; 10(10)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34684252

RESUMO

Over the last years, invasive infections caused by filamentous fungi have constituted a serious threat to public health worldwide. Aspergillus, Coccidioides, Mucorales (the most common filamentous fungi), and Candida auris (non-filamentous fungus) can cause infections in humans. They are able to cause critical life-threatening illnesses in immunosuppressed individuals, patients with HIV/AIDS, uncontrolled diabetes, hematological diseases, transplantation, and chemotherapy. In this review, we describe the available nanoformulations (both metallic and polymers-based nanoparticles) developed to increase efficacy and reduce the number of adverse effects after the administration of conventional antifungals. To treat aspergillosis and infections caused by Candida, multiple strategies have been used to develop new therapeutic alternatives, such as incorporating coating materials, complexes synthesized by green chemistry, or coupled with polymers. However, the therapeutic options for coccidioidomycosis and mucormycosis are limited; most of them are in the early stages of development. Therefore, more research needs to be performed to develop new therapeutic alternatives that contribute to the progress of this field.

18.
Iran J Microbiol ; 13(4): 458-463, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34557273

RESUMO

BACKGROUND AND OBJECTIVES: It is well known that Staphylococcus aureus biofilm plays an important role in adenoiditis and biofilm resistance frequently results in failure of therapy. The goal of this study was to evaluate the biofilm production of S. aureus isolates obtained from adenoid specimens and assess the relationship between biofilm formation ability and ica operon genes. MATERIALS AND METHODS: A total of 112 adenoid samples were obtained from patients under 15 years old with adenoid hypertrophy. All S. aureus isolates were initially identified by standard microbiological tests and amplification of nuc by polymerase chain reaction (PCR) technique. Biofilm formation of S. aureus isolates was evaluated and icaADBC genes were detected by PCR technique. RESULTS: There were 46 isolates (41%) identified as S. aureus. The ability to produce biofilm was detected among total S. aureus isolates. Molecular study of ica operon revealed that 2 (6.3%) and 19 (59.4%) isolates carried icaA and icaD, respectively. The prevalence of icaA + icaD was seen among 11 (34.4%) S. aureus isolates, while icaC and icaB were not detected. CONCLUSION: Our findings indicated that icaABCD operon are associated with biofilm formation in S. aureus isolates, however the absence of these genes may not necessarily exclude this property.

19.
J Nanobiotechnology ; 19(1): 190, 2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34174890

RESUMO

BACKGROUND: Within the last decade, genetic engineering and synthetic biology have revolutionized society´s ability to mass-produce complex biological products within genetically-modified microorganisms containing elegantly designed genetic circuitry. However, many challenges still exist in developing bioproduction processes involving genetically modified microorganisms with complex or multiple gene circuits. These challenges include the development of external gene expression regulation methods with the following characteristics: spatial-temporal control and scalability, while inducing minimal permanent or irreversible system-wide conditions. Different stimuli have been used to control gene expression and mitigate these challenges, and they can be characterized by the effect they produce in the culture media conditions. Invasive stimuli that cause permanent, irreversible changes (pH and chemical inducers), non-invasive stimuli that cause partially reversible changes (temperature), and non-invasive stimuli that cause reversible changes in the media conditions (ultrasound, magnetic fields, and light). METHODS: Opto-control of gene expression is a non-invasive external trigger that complies with most of the desired characteristics of an external control system. However, the disadvantage relies on the design of the biological photoreceptors and the necessity to design them to respond to a different wavelength for every bioprocess needed to be controlled or regulated in the microorganism. Therefore, this work proposes using biocompatible metallic nanoparticles as external controllers of gene expression, based on their ability to convert light into heat and the capacity of nanotechnology to easily design a wide array of nanostructures capable of absorbing light at different wavelengths and inducing plasmonic photothermal heating. RESULTS: Here, we designed a nanobiosystem that can be opto-thermally triggered using LED light. The nanobiosystem is composed of biocompatible gold nanoparticles and a genetically modified E. coli with a plasmid that allows mCherry fluorescent protein production at 37 °C in response to an RNA thermometer. CONCLUSIONS: The LED-triggered photothermal protein production system here designed offers a new, cheaper, scalable switchable method, non-destructive for living organisms, and contribute toward the evolution of bioprocess production systems.


Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica/efeitos da radiação , Luz , Nanopartículas Metálicas/química , Escherichia coli/efeitos da radiação , Ouro/química , Temperatura Alta , Proteínas Luminescentes , Nanoestruturas , Nanotecnologia , Tamanho da Partícula , Temperatura , Proteína Vermelha Fluorescente
20.
Front Microbiol ; 12: 630695, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33935991

RESUMO

The world is facing a significant increase in infections caused by drug-resistant infectious agents. In response, various strategies have been recently explored to treat them, including the development of bacteriocins. Bacteriocins are a group of antimicrobial peptides produced by bacteria, capable of controlling clinically relevant susceptible and drug-resistant bacteria. Bacteriocins have been studied to be able to modify and improve their physicochemical properties, pharmacological effects, and biosafety. This manuscript focuses on the research being developed on the biosafety of bacteriocins, which is a topic that has not been addressed extensively in previous reviews. This work discusses the studies that have tested the effect of bacteriocins against pathogens and assess their toxicity using in vivo models, including murine and other alternative animal models. Thus, this work concludes the urgency to increase and advance the in vivo models that both assess the efficacy of bacteriocins as antimicrobial agents and evaluate possible toxicity and side effects, which are key factors to determine their success as potential therapeutic agents in the fight against infections caused by multidrug-resistant microorganisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA