Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pathogens ; 12(11)2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-38003754

RESUMO

Glucose metabolism is critical for the African trypanosome, Trypanosoma brucei, serving as the lone source of ATP production for the bloodstream form (BSF) parasite in the glucose-rich environment of the host blood. Recently, phosphonate inhibitors of human enolase (ENO), the enzyme responsible for the interconversion of 2-phosphoglycerate (2-PG) to phosphoenolpyruvate (PEP) in glycolysis or PEP to 2-PG in gluconeogenesis, have been developed for the treatment of glioblastoma multiforme (GBM). Here, we have tested these agents against T. brucei ENO (TbENO) and found the compounds to be potent enzyme inhibitors and trypanocides. For example, (1-hydroxy-2-oxopyrrolidin-3-yl) phosphonic acid (deoxy-SF2312) was a potent enzyme inhibitor (IC50 value of 0.60 ± 0.23 µM), while a six-membered ring-bearing phosphonate, (1-hydroxy-2-oxopiperidin-3-yl) phosphonic acid (HEX), was less potent (IC50 value of 2.1 ± 1.1 µM). An analog with a larger seven-membered ring, (1-hydroxy-2-oxoazepan-3-yl) phosphonic acid (HEPTA), was not active. Molecular docking simulations revealed that deoxy-SF2312 and HEX had binding affinities of -6.8 and -7.5 kcal/mol, respectively, while the larger HEPTA did not bind as well, with a binding of affinity of -4.8 kcal/mol. None of these compounds were toxic to BSF parasites; however, modification of enzyme-active phosphonates through the addition of pivaloyloxymethyl (POM) groups improved activity against T. brucei, with POM-modified (1,5-dihydroxy-2-oxopyrrolidin-3-yl) phosphonic acid (POMSF) and POMHEX having EC50 values of 0.45 ± 0.10 and 0.61 ± 0.08 µM, respectively. These findings suggest that HEX is a promising lead against T. brucei and that further development of prodrug HEX analogs is warranted.

2.
Exp Parasitol ; 243: 108410, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36309065

RESUMO

Entamoeba histolytica is a protozoan parasite that causes amoebic dysentery and amoebic liver abscess in humans, affecting millions of people worldwide. This pathogen possesses a two-stage life cycle consisting of an environmentally stable cyst and a pathogenic amoeboid trophozoite. As cysts can be ingested from contaminated food and water, this parasite is prevalent in underdeveloped countries and poses a significant health burden. Until recently there was no reliable method for inducing stage conversion in E. histolytica in vitro. As such, the reptilian pathogen, Entamoeba invadens, has long-served as a surrogate. Much remains unclear about stage conversion in these parasites and current treatments for amoebiasis are lacking, as they cause severe side effects. Therefore, new therapeutic strategies are needed. The genomes of these parasites remain enigmatic as approximately 54% of E. histolytica genes and 66% of E. invadens genes are annotated as hypothetical proteins. In this study, we characterized two hypothetical proteins in the Entamoeba species, EIN_059080, in E. invadens, and its homolog, EHI_056700, in the human pathogen, E. histolytica. EHI_056700 has no homolog in the human host. We used an RNAi-based silencing system to reduce expression of these genes in E. invadens and E. histolytica trophozoites. Loss of EIN_059080 resulted in a decreased rate of encystation and an increased rate of erythrophagocytosis, an important virulence function. Additionally, mutant parasites were more susceptible to oxidative stress. Similarly, loss of EHI_056700 in E. histolytica trophozoites resulted in increased susceptibility to oxidative stress and glucose deprivation, but not to nitrosative stress. Unlike the E. invadens mutants, E. histolytica parasites with decreased reduced expression of EHI_056700 exhibited a decreased rate of erythrophagocytosis of and adhesion to host cells. Taken together, these data suggest that these hypothetical proteins play a role in stage conversion, virulence, and the response to stress in the Entamoebae. Since parasites with reduced expression of EHI_056700 show decreased virulence functions and increased susceptibility to physiologically relevant stressors, EHI_056700 may represent a possible therapeutic target for the treatment of amoebiasis.


Assuntos
Entamoeba histolytica , Entamoeba , Abscesso Hepático Amebiano , Parasitos , Animais , Humanos , Entamoeba/genética , Virulência , Entamoeba histolytica/genética , Estágios do Ciclo de Vida
3.
Pathogens ; 10(5)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34069826

RESUMO

Glycolysis is well described in Trypanosoma brucei, while the importance of gluconeogenesis and one of the key enzymes in that pathway, fructose 1,6-bisphosphatase, is less understood. Using a sensitive and specific assay for FBPase, we demonstrate that FBPase activity in insect stage, procyclic form (PF), parasite changes with parasite cell line, extracellular glucose levels, and cell density. FBPase activity in log phase PF 2913 cells was highest in high glucose conditions, where gluconeogenesis is expected to be inactive, and was undetectable in low glucose, where gluconeogenesis is predicted to be active. This unexpected relationship between FBPase activity and extracellular glucose levels suggests that FBPase may not be exclusively involved in gluconeogenesis and may play an additional role in parasite metabolism. In stationary phase cells, the relationship between FBPase activity and extracellular glucose levels was reversed. Furthermore, we found that monomorphic PF 2913 cells had significantly higher FBPase levels than pleomorphic PF AnTat1.1 cells where the activity was undetectable except when cells were grown in standard SDM79 media, which is glucose-rich and commonly used to grow PF trypanosomes in vitro. Finally, we observed several conditions where FBPase activity changed while protein levels did not, suggesting that the enzyme may be regulated via post-translational modifications.

4.
Biochem Soc Trans ; 49(1): 29-39, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33439256

RESUMO

Kinetoplastid parasites have essential organelles called glycosomes that are analogous to peroxisomes present in other eukaryotes. While many of the processes that regulate glycosomes are conserved, there are several unique aspects of their biology that are divergent from other systems and may be leveraged as therapeutic targets for the treatment of kinetoplastid diseases. Glycosomes are heterogeneous organelles that likely exist as sub-populations with different protein composition and function in a given cell, between individual cells, and between species. However, the limitations posed by the small size of these organelles makes the study of this heterogeneity difficult. Recent advances in the analysis of small vesicles by flow-cytometry provide an opportunity to overcome these limitations. In this review, we describe studies that document the diverse nature of glycosomes and propose an approach to using flow cytometry and organelle sorting to study the diverse composition and function of these organelles. Because the cellular machinery that regulates glycosome protein import and biogenesis is likely to contribute, at least in part, to glycosome heterogeneity we highlight some ways in which the glycosome protein import machinery differs from that of peroxisomes in other eukaryotes.


Assuntos
Kinetoplastida/citologia , Microcorpos/fisiologia , Animais , Kinetoplastida/genética , Kinetoplastida/metabolismo , Kinetoplastida/ultraestrutura , Microcorpos/metabolismo , Peroxissomos/metabolismo , Transporte Proteico , Proteínas de Protozoários/metabolismo
5.
mSphere ; 5(1)2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-32075879

RESUMO

Kinetoplastid parasites, including Trypanosoma brucei, Trypanosoma cruzi, and Leishmania, harbor unique organelles known as glycosomes, which are evolutionarily related to peroxisomes. Glycosome/peroxisome biogenesis is mediated by proteins called peroxins that facilitate organelle formation, proliferation, and degradation and import of proteins housed therein. Import of matrix proteins occurs via one of two pathways that are dictated by their peroxisome targeting sequence (PTS). In PTS1 import, a C-terminal tripeptide sequence, most commonly SKL, is recognized by the soluble receptor Pex5. In PTS2 import, a less conserved N-terminal sequence is recognized by Pex7. The soluble receptors deliver their cargo to the import channel consisting minimally of Pex13 and Pex14. While much of the import process is conserved, kinetoplastids are the only organisms to have two Pex13s, Pex13.1 and Pex13.2. It is unclear why trypanosomes require two Pex13s when one is sufficient for most eukaryotes. To interrogate the role of Pex13.2, we have employed biochemical approaches to partially resolve the composition of the Pex13/Pex14 import complexes in T. brucei and characterized glycosome morphology and protein import in Pex13.2-deficient parasites. Here, we show that Pex13.2 is an integral glycosome membrane protein that interacts with Pex13.1 and Pex14. The N terminus of Pex13.2 faces the cytoplasmic side of the membrane, where it can facilitate interactions required for protein import. Two-dimensional gel electrophoresis revealed three glycosome membrane complexes containing combinations of Pex13.1, Pex13.2, and Pex14. The silencing of Pex13.2 resulted in parasites with fewer, larger glycosomes and disrupted glycosome protein import, suggesting the protein is involved in glycosome biogenesis as well as protein import. Furthermore, superresolution microscopy demonstrated that Pex13.2 localizes to discrete foci in the glycosome periphery, indicating that the glycosome periphery is not homogenous.IMPORTANCETrypanosoma brucei causes human African trypanosomiasis and a wasting disease called Nagana in livestock. Current treatments are expensive, toxic, and difficult to administer. Because of this, the search for new drug targets is essential. T. brucei has glycosomes that are essential to parasite survival; however, our ability to target them in drug development is hindered by our lack of understanding about how these organelles are formed and maintained. This work forwards our understanding of how the parasite-specific protein Pex13.2 functions in glycosome protein import and lays the foundation for future studies focused on blocking Pex13.2 function, which would be lethal to bloodstream-form parasites that reside in the mammalian bloodstream.


Assuntos
Microcorpos/metabolismo , Peroxinas/metabolismo , Peroxissomos/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/genética , Citosol/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Peroxinas/genética , Peroxissomos/genética , Transporte Proteico , Proteínas de Protozoários/genética
6.
Biochemistry ; 58(7): 875-882, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30638014

RESUMO

The African trypanosome, Trypanosoma brucei, is the causative agent of human African trypanosomiasis (HAT). African trypanosomes are extracellular parasites that possess a single flagellum that imparts a high degree of motility to the microorganisms. In addition, African trypanosomes show significant metabolic and structural adaptation to environmental conditions. Analysis of the ways that environmental cues affect these organisms generally requires rapid perfusion experiments in combination with single-cell imaging, which are difficult to apply under conditions of rapid motion. Microfluidic devices have been used previously as a strategy for trapping small motile cells in a variety of organisms, including trypanosomes; however, in the past, such devices required individual fabrication in a cleanroom, limiting their application. Here we demonstrate that a commercial microfluidic device, typically used for bacterial trapping, can trap bloodstream and procyclic form trypanosomes, allowing for rapid buffer exchange via perfusion. As a result, time-lapse single-cell microscopy images of these highly motile parasites were acquired during environmental variations. Using these devices, we have been able to perform and analyze perfusion-based single-cell tracking experiments of the responses of the parasite to changes in glucose availability, which is a major step in resolving the mechanisms of adaptation of kinetoplasts to their individual biological niches; we demonstrate utility of this tool for making measurements of procyclic form trypanosome intracellular glucose levels as a function of changes in extracellular glucose concentrations. These experiments demonstrate that cytosolic glucose equilibrates with external conditions as fast as, or faster than, the rate of solution exchange in the instrument.


Assuntos
Dispositivos Lab-On-A-Chip , Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos , Trypanosoma brucei brucei/fisiologia , Fluoresceína , Glucose/metabolismo , Análise de Célula Única , Imagem com Lapso de Tempo/instrumentação , Imagem com Lapso de Tempo/métodos , Trypanosoma brucei brucei/citologia
7.
PLoS Negl Trop Dis ; 12(5): e0006523, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29851949

RESUMO

The bloodstream lifecycle stage of the kinetoplastid parasite Trypanosoma brucei relies solely on glucose metabolism for ATP production, which occurs in peroxisome-like organelles (glycosomes). Many studies have been conducted on glucose uptake and metabolism, but none thus far have been able to monitor changes in cellular and organellar glucose concentration in live parasites. We have developed a non-destructive technique for monitoring changes in cytosolic and glycosomal glucose levels in T. brucei using a fluorescent protein biosensor (FLII12Pglu-700µÎ´6) in combination with flow cytometry. T. brucei parasites harboring the biosensor allowed for observation of cytosolic glucose levels. Appending a type 1 peroxisomal targeting sequence caused biosensors to localize to glycosomes, which enabled observation of glycosomal glucose levels. Using this approach, we investigated cytosolic and glycosomal glucose levels in response to changes in external glucose or 2-deoxyglucose concentration. These data show that procyclic form and bloodstream form parasites maintain different glucose concentrations in their cytosol and glycosomes. In procyclic form parasites, the cytosol and glycosomes maintain indistinguishable glucose levels (3.4 ± 0.4mM and 3.4 ± 0.5mM glucose respectively) at a 6.25mM external glucose concentration. In contrast, bloodstream form parasites maintain glycosomal glucose levels that are ~1.8-fold higher than the surrounding cytosol, equating to 1.9 ± 0.6mM in cytosol and 3.5 ± 0.5mM in glycosomes. While the mechanisms of glucose transport operating in the glycosomes of bloodstream form T. brucei remain unresolved, the methods described here will provide a means to begin to dissect the cellular machinery required for subcellular distribution of this critical hexose.


Assuntos
Citometria de Fluxo/métodos , Transferência Ressonante de Energia de Fluorescência/métodos , Glucose/metabolismo , Estágios do Ciclo de Vida , Microcorpos/metabolismo , Trypanosoma brucei brucei/fisiologia , Animais , Transporte Biológico , Técnicas Biossensoriais/métodos , Citosol/metabolismo , Microcorpos/química , Proteínas de Protozoários/metabolismo
8.
ACS Infect Dis ; 4(7): 1058-1066, 2018 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-29741365

RESUMO

Trypanosoma brucei, which causes human African typanosomiasis (HAT), derives cellular ATP from glucose metabolism while in the mammalian host. Targeting glucose uptake or regulation in the parasite has been proposed as a potential therapeutic strategy. However, few methods have been described to identify and characterize potential inhibitors of glucose uptake and regulation. Here, we report development of a screening assay that identifies small molecule disrupters of glucose levels in the cytosol and glycosomes. Using an endogenously expressed fluorescent protein glucose sensor expressed in cytosol or glycosomes, we monitored intracellular glucose depletion in the different cellular compartments. Two glucose level disrupters were identified, one of which only exhibited inhibition of glycosomal glucose and did not affect cytosolic levels. In addition to inhibiting glucose uptake with relatively high potency (EC50 = 700 nM), the compound also showed modest bloodstream form parasite killing activity. Expanding this assay will allow for identification of candidate compounds that disrupt parasite glucose metabolism.


Assuntos
Metabolismo dos Carboidratos/efeitos dos fármacos , Citometria de Fluxo , Transferência Ressonante de Energia de Fluorescência , Glucose/metabolismo , Ensaios de Triagem em Larga Escala , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma brucei brucei/metabolismo , Técnicas Biossensoriais , Relação Dose-Resposta a Droga , Descoberta de Drogas , Reprodutibilidade dos Testes , Bibliotecas de Moléculas Pequenas , Tripanossomicidas/química
9.
PLoS Negl Trop Dis ; 11(4): e0005333, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28426655

RESUMO

Trypanosomatid parasites, including Trypanosoma and Leishmania, are the causative agents of lethal diseases threatening millions of people around the world. These organisms compartmentalize glycolysis in essential, specialized peroxisomes called glycosomes. Peroxisome proliferation can occur through growth and division of existing organelles and de novo biogenesis from the endoplasmic reticulum. The level that each pathway contributes is debated. Current evidence supports the concerted contribution of both mechanisms in an equilibrium that can vary depending on environmental conditions and metabolic requirements of the cell. Homologs of a number of peroxins, the proteins involved in peroxisome biogenesis and matrix protein import, have been identified in T. brucei. Based on these findings, it is widely accepted that glycosomes proliferate through growth and division of existing organelles; however, to our knowledge, a de novo mechanism of biogenesis has not been directly demonstrated. Here, we review recent findings that provide support for the existence of an endoplasmic reticulum (ER)-derived de novo pathway of glycosome biogenesis in T. brucei. Two studies recently identified PEX13.1, a peroxin involved in matrix protein import, in the ER of procyclic form T. brucei. In other eukaryotes, peroxins including PEX13 have been found in the ER of cells undergoing de novo biogenesis of peroxisomes. In addition, PEX16 and PEX19 have been characterized in T. brucei, both of which are important for de novo biogenesis in other eukaryotes. Because glycosomes are rapidly remodeled via autophagy during life cycle differentiation, de novo biogenesis could provide a method of restoring glycosome populations following turnover. Together, the findings we summarize provide support for the hypothesis that glycosome proliferation occurs through growth and division of pre-existing organelles and de novo biogenesis of new organelles from the ER and that the level each mechanism contributes is influenced by glucose availability.


Assuntos
Leishmania/crescimento & desenvolvimento , Proteínas de Membrana/metabolismo , Microcorpos/metabolismo , Peroxissomos/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/crescimento & desenvolvimento , Autofagia , Diferenciação Celular , Retículo Endoplasmático , Estágios do Ciclo de Vida
10.
J Biol Chem ; 292(19): 7795-7805, 2017 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-28348078

RESUMO

Here we report the use of a fluorescein-tagged peroxisomal targeting sequence peptide (F-PTS1, acetyl-C{K(FITC)}GGAKL) for investigating pH regulation of glycosomes in live procyclic form Trypanosoma brucei When added to cells, this fluorescent peptide is internalized within vesicular structures, including glycosomes, and can be visualized after 30-60 min. Using F-PTS1 we are able to observe the pH conditions inside glycosomes in response to starvation conditions. Previous studies have shown that in the absence of glucose, the glycosome exhibits mild acidification from pH 7.4 ± 0.2 to 6.8 ± 0.2. Our results suggest that this response occurs under proline starvation as well. This pH regulation is found to be independent from cytosolic pH and requires a source of Na+ ions. Glycosomes were also observed to be more resistant to external pH changes than the cytosol; placement of cells in acidic buffers (pH 5) reduced the pH of the cytosol by 0.8 ± 0.1 pH units, whereas glycosomal pH decreases by 0.5 ± 0.1 pH units. This observation suggests that regulation of glycosomal pH is different and independent from cytosolic pH regulation. Furthermore, pH regulation is likely to work by an active process, because cells depleted of ATP with 2-deoxyglucose and sodium azide were unable to properly regulate pH. Finally, inhibitor studies with bafilomycin and EIPA suggest that both V-ATPases and Na+/H+ exchangers are required for glycosomal pH regulation.


Assuntos
Microcorpos/química , Trypanosoma brucei brucei/química , Trifosfato de Adenosina/química , Amilorida/análogos & derivados , Amilorida/química , Animais , Citosol/química , Desoxiglucose/química , Digitonina/química , Glucose/química , Homeostase , Concentração de Íons de Hidrogênio , Macrolídeos/química , Microscopia de Fluorescência , Potássio/química , Prolina/química , Domínios Proteicos , Proteínas de Protozoários/química , Azida Sódica/química
11.
J Eukaryot Microbiol ; 64(1): 97-105, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27339640

RESUMO

Trypanosoma brucei is the causative agent of diseases that affect 30,000-50,000 people annually. Trypanosoma brucei harbors unique organelles named glycosomes that are essential to parasite survival, which requires growth under fluctuating environmental conditions. The mechanisms that govern the biogenesis of these organelles are poorly understood. Glycosomes are evolutionarily related to peroxisomes, which can proliferate de novo from the endoplasmic reticulum or through the growth and division of existing organelles depending on the organism and environmental conditions. The effect of environment on glycosome biogenesis is unknown. Here, we demonstrate that the glycosome membrane protein, TbPex13.1, is localized to glycosomes when cells are cultured under high glucose conditions and to the endoplasmic reticulum in low glucose conditions. This localization in low glucose was dependent on the presence of a C-terminal tripeptide sequence. Our findings suggest that glycosome biogenesis is influenced by extracellular glucose levels and adds to the growing body of evidence that de novo glycosome biogenesis occurs in trypanosomes. Because the movement of peroxisomal membrane proteins is a hallmark of ER-dependent peroxisome biogenesis, TbPex13.1 may be a useful marker for the study such processes in trypanosomes.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Microcorpos/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/metabolismo , Glucose/administração & dosagem , Glucose/metabolismo , Proteínas de Membrana/genética , Peroxissomos/genética , Peroxissomos/metabolismo , Proteínas de Protozoários/genética , Trypanosoma brucei brucei/genética
12.
Biochemistry ; 52(21): 3629-37, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23651061

RESUMO

Studies of dynamic changes in organelles of protozoan parasite Trypanosoma brucei have been limited, in part because of the difficulty of targeting analytical probes to specific subcellular compartments. Here we demonstrate application of a ratiometric probe for pH quantification in T. brucei glycosomes. The probe consists of a peptide encoding the peroxisomal targeting sequence (F-PTS1, acetyl-CKGGAKL) coupled to fluorescein, which responds to pH. When incubated with living parasites, the probe is internalized within vesicular structures that colocalize with a glycosomal marker. Inhibition of uptake of F-PTS1 at 4 °C and pulse-chase colocalization with fluorescent dextran suggested that the probe is initially taken up by non-receptor-mediated endocytosis but is subsequently transported separately from dextran and localized within glycosomes, prior to the final fusion of labeled glycosomes and lysosomes as part of glycosomal turnover. Intraorganellar measurements and pH calibration with F-PTS1 in T. brucei glycosomes indicate that the resting glycosomal pH under physiological conditions is 7.4 ± 0.2. However, incubation in glucose-depleted buffer triggered mild acidification of the glycosome over a period of 20 min, with a final observed pH of 6.8 ± 0.3. This glycosomal acidification was reversed by reintroduction of glucose. Coupling of ratiometric fluorescent sensors and reporters to PTS peptides offers an invaluable tool for monitoring in situ glycosomal response(s) to changing environmental conditions and could be applied to additional kinetoplastid parasites.


Assuntos
Concentração de Íons de Hidrogênio , Microcorpos/metabolismo , Trypanosoma brucei brucei/metabolismo , Animais , Citometria de Fluxo , Frações Subcelulares/metabolismo
13.
Eukaryot Cell ; 12(8): 1072-9, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23709182

RESUMO

Trypanosomes compartmentalize many metabolic enzymes in glycosomes, peroxisome-related microbodies that are essential to parasite survival. While it is understood that these dynamic organelles undergo profound changes in protein composition throughout life cycle differentiation, the adaptations that occur in response to changes in environmental conditions are less appreciated. We have adopted a fluorescent-organelle reporter system in procyclic Trypanosoma brucei by expressing a fluorescent protein (FP) fused to a glycosomal targeting sequence (peroxisome-targeting sequence 2 [PTS2]). In these cell lines, PTS2-FP is localized within import-competent glycosomes, and organelle composition can be analyzed by microscopy and flow cytometry. Using this reporter system, we have characterized parasite populations that differ in their glycosome composition. In glucose-rich medium, two parasite populations are observed; one population harbors glycosomes bearing the full repertoire of glycosome proteins, while the other parasite population contains glycosomes that lack the usual glycosome-resident proteins but do contain the glycosome membrane protein TbPEX11. Interestingly, these cells lack TbPEX13, a protein essential for the import of proteins into the glycosome. This bimodal distribution is lost in low-glucose medium. Furthermore, we have demonstrated that changes in environmental conditions trigger changes in glycosome protein composition. These findings demonstrate a level of procyclic glycosome diversity heretofore unappreciated and offer a system by which glycosome dynamics can be studied in live cells. This work adds to our growing understanding of how the regulation of glycosome composition relates to environmental sensing.


Assuntos
Microcorpos/metabolismo , Proteínas de Protozoários/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Trypanosoma brucei brucei/metabolismo , Tripanossomíase Africana/genética , Animais , Corantes Fluorescentes , Microcorpos/genética , Receptor 2 de Sinal de Orientação para Peroxissomos , Peroxissomos/genética , Peroxissomos/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Homologia de Sequência de Aminoácidos , Trypanosoma brucei brucei/patogenicidade , Tripanossomíase Africana/metabolismo
14.
J Biomol Screen ; 18(6): 714-25, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23479355

RESUMO

Tumor marker endothelial 8 (TEM8) is a receptor for the protective antigen (PA) component of anthrax toxin. TEM8 is upregulated on endothelial cells lining the blood vessels within tumors, compared with normal blood vessels. A number of studies have demonstrated a pivotal role for TEM8 in developmental and tumor angiogenesis. We have also shown that targeting the anthrax receptors with a mutated form of PA inhibits angiogenesis and tumor formation in vivo. Here we describe the development and testing of a high-throughput fluorescence resonance energy transfer assay to identify molecules that strongly inhibit the interaction of PA and TEM8. The assay we describe is sensitive and robust, with a Z' value of 0.8. A preliminary screen of 2310 known bioactive library compounds identified ebselen and thimerosal as inhibitors of the TEM8-PA interaction. These molecules each contain a cysteine-reactive transition metal, and complementary studies indicate that their inhibition of interaction is due to modification of a cysteine residue in the TEM8 extracellular domain. This is the first demonstration of a high-throughput screening assay that identifies inhibitors of TEM8, with potential application for antianthrax and antiangiogenic diseases.


Assuntos
Antígenos de Bactérias/metabolismo , Proteínas de Neoplasias/antagonistas & inibidores , Substâncias Protetoras/metabolismo , Receptores de Superfície Celular/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Bacillus anthracis/imunologia , Biomarcadores Tumorais/metabolismo , Transferência Ressonante de Energia de Fluorescência , Ensaios de Triagem em Larga Escala , Humanos , Proteínas dos Microfilamentos , Proteínas de Neoplasias/metabolismo , Projetos Piloto , Receptores de Superfície Celular/antagonistas & inibidores
15.
Int J Parasitol ; 42(4): 401-9, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22619756

RESUMO

The majority of the glycolytic enzymes in the African trypanosome are compartmentalised within peroxisome-like organelles, the glycosomes. Polypeptides harbouring peroxisomal targeting sequences (PTS type 1 or 2) are targeted to these organelles. This targeting is essential to parasite viability, as compartmentalisation of glycolytic enzymes prevents unregulated ATP-dependent phosphorylation of intermediate metabolites. Here, we report the surprising extra-glycosomal localisation of a PTS-2 bearing trypanosomal hexokinase, TbHK2. In bloodstream form parasites, the protein localises to both glycosomes and to the flagellum. Evidence for this includes fractionation and immunofluorescence studies using antisera generated against the authentic protein as well as detection of epitope-tagged recombinant versions of the protein. In the insect stage parasite, distribution is different, with the polypeptide localised to glycosomes and proximal to the basal bodies. The function of the extra-glycosomal protein remains unclear. While its association with the basal body suggests that it may have a role in locomotion in the insect stage parasite, no detectable defect in directional motility or velocity of cell movement were observed for TbHK2-deficient cells, suggesting that the protein may have a different function in the cell.


Assuntos
Hexoquinase/análise , Microcorpos/química , Microcorpos/enzimologia , Trypanosoma brucei brucei/química , Trypanosoma brucei brucei/enzimologia , Flagelos/química , Flagelos/enzimologia , Deleção de Genes , Hexoquinase/genética , Locomoção , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/fisiologia
16.
Mol Biol Int ; 2011: 123702, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22091393

RESUMO

Subspecies of the African trypanosome, Trypanosoma brucei, which cause human African trypanosomiasis, are transmitted by the tsetse fly, with transmission-essential lifecycle stages occurring in both the insect vector and human host. During infection of the human host, the parasite is limited to using glycolysis of host sugar for ATP production. This dependence on glucose breakdown presents a series of targets for potential therapeutic development, many of which have been explored and validated as therapeutic targets experimentally. These include enzymes directly involved in glucose metabolism (e.g., the trypanosome hexokinases), as well as cellular components required for development and maintenance of the essential subcellular compartments that house the major part of the pathway, the glycosomes.

17.
J Biol Chem ; 286(38): 33150-7, 2011 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-21813651

RESUMO

The African trypanosome, Trypanosoma brucei, compartmentalizes some metabolic enzymes within peroxisome-like organelles called glycosomes. The amounts, activities, and types of glycosomal enzymes are modulated coincident with developmental and environmental changes. Pexophagy (fusion of glycosomes with acidic lysosomes) has been proposed to facilitate this glycosome remodeling. Here, we report that, although glycosome-resident enzyme T. brucei hexokinase 1 (TbHK1) protein levels are maintained during pexophagy, acidification inactivates the activity. Glycerol 3-phosphate, which is produced in vivo by a glycosome-resident glycerol kinase, mitigated acid inactivation of lysate-derived TbHK activity. Using recombinant TbHK1, we found that glycerol 3-P influenced enzyme activity at pH 6.5 by preventing substrate and product inhibition by ATP and ADP, respectively. Additionally, TbHK1 inhibition by the flavonol quercetin (QCN) was partially reversed by glycerol 3-P at pH 7.4, whereas at pH 6.5, enzyme activity in the presence of QCN was completely maintained by glycerol 3-P. However, glycerol 3-P did not alter the interaction of QCN with TbHK1, as the lone Trp residue (Trp-177) was quenched under all conditions tested. These findings suggest potential novel mechanisms for the regulation of TbHK1, particularly given the acidification of glycosomes that can be induced under a variety of parasite growth conditions.


Assuntos
Meio Ambiente , Glicerofosfatos/farmacologia , Hexoquinase/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma brucei brucei/enzimologia , Difosfato de Adenosina/farmacologia , Trifosfato de Adenosina/farmacologia , Ativação Enzimática/efeitos dos fármacos , Glicerol/farmacologia , Hexoquinase/antagonistas & inibidores , Hexoquinase/química , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Microcorpos/efeitos dos fármacos , Microcorpos/metabolismo , Modelos Moleculares , Estrutura Secundária de Proteína , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/química , Quercetina/farmacologia , Proteínas Recombinantes/metabolismo , Especificidade por Substrato/efeitos dos fármacos , Trypanosoma brucei brucei/citologia
18.
Exp Parasitol ; 127(2): 423-8, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20971104

RESUMO

Hexokinases from the African trypanosome, Trypanosoma brucei, are attractive targets for the development of anti-parasitic drugs, in part because the parasite utilizes glycolysis exclusively for ATP production during the mammalian infection. Here, we have demonstrated that the bioflavanoid quercetin (QCN), a known trypanocide, is a mixed inhibitor of Trypanosoma brucei hexokinase 1 (TbHK1) (IC(50) = 4.1 ± 0.8µM). Spectroscopic analysis of QCN binding to TbHK1, taking advantage of the intrinsically fluorescent single tryptophan (Trp177) in TbHK1, revealed that QCN quenches emission of Trp177, which is located near the hinge region of the enzyme. ATP similarly quenched Trp177 emission, while glucose had no impact on fluorescence. Supporting the possibility that QCN toxicity is a consequence of inhibition of the essential hexokinase, in live parasites QCN fluorescence localizes to glycosomes, the subcellular home of TbHK1. Additionally, RNAi-mediated silencing of TbHK1 expression expedited QCN induced death, while over-expressing TbHK1 protected trypanosomes from the compound. In summary, these observations support the suggestion that QCN toxicity is in part attributable to inhibition of the essential TbHK1.


Assuntos
Inibidores Enzimáticos/farmacologia , Hexoquinase/antagonistas & inibidores , Quercetina/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Flavonoides/química , Flavonoides/farmacologia , Microcorpos/metabolismo , Microscopia de Fluorescência , Projetos Piloto , Quercetina/química , Quercetina/metabolismo , Proteínas Recombinantes/antagonistas & inibidores , Tripanossomicidas/química , Tripanossomicidas/metabolismo , Trypanosoma brucei brucei/enzimologia , Trypanosoma brucei brucei/ultraestrutura
19.
PLoS Negl Trop Dis ; 4(4): e659, 2010 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-20405000

RESUMO

BACKGROUND: The parasitic protozoan Trypanosoma brucei utilizes glycolysis exclusively for ATP production during infection of the mammalian host. The first step in this metabolic pathway is mediated by hexokinase (TbHK), an enzyme essential to the parasite that transfers the gamma-phospho of ATP to a hexose. Here we describe the identification and confirmation of novel small molecule inhibitors of bacterially expressed TbHK1, one of two TbHKs expressed by T. brucei, using a high throughput screening assay. METHODOLOGY/PRINCIPAL FINDINGS: Exploiting optimized high throughput screening assay procedures, we interrogated 220,233 unique compounds and identified 239 active compounds from which ten small molecules were further characterized. Computation chemical cluster analyses indicated that six compounds were structurally related while the remaining four compounds were classified as unrelated or singletons. All ten compounds were approximately 20-17,000-fold more potent than lonidamine, a previously identified TbHK1 inhibitor. Seven compounds inhibited T. brucei blood stage form parasite growth (0.03

Assuntos
Antiparasitários/isolamento & purificação , Inibidores Enzimáticos/isolamento & purificação , Hexoquinase/antagonistas & inibidores , Proteínas de Protozoários/antagonistas & inibidores , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma brucei brucei/enzimologia , Antiparasitários/química , Antiparasitários/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos
20.
Exp Parasitol ; 123(3): 250-7, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19647733

RESUMO

The African trypanosome, Trypanosoma brucei, can gauge its environment by sensing nutrient availability. For example, procyclic form (PF) trypanosomes monitor changes in glucose levels to regulate surface molecule expression, which is important for survival in the tsetse fly vector. The molecular connection between glycolysis and surface molecule expression is unknown. Here we partially characterize T. brucei homologs of the beta and gamma subunits of the AMP-activated protein kinase (AMPK), and determine their roles in regulating surface molecule expression. Using flow cytometry and mass spectrometry, we found that TbAMPKbeta or TbAMPKgamma-deficient parasites express both of the major surface molecules, EP- and GPEET-procyclin, with the latter being a form that is expressed when glucose is low such as in the tsetse fly. Last, we have found that the putative scaffold component of the complex, TbAMPKbeta, fractionates with organellar components and colocalizes in part with a glycosomal marker as well as the flagellum of PF parasites.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Glicoproteínas de Membrana/biossíntese , Proteínas de Protozoários/biossíntese , Trypanosoma brucei brucei/enzimologia , Proteínas Quinases Ativadas por AMP/química , Proteínas Quinases Ativadas por AMP/genética , Animais , Citometria de Fluxo , Imunofluorescência , Expressão Gênica , Interferência de RNA , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Trypanosoma brucei brucei/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA