RESUMO
For more than 60 years, humans have travelled into space. Until now, the majority of astronauts have been professional, government agency astronauts selected, in part, for their superlative physical fitness and the absence of disease. Commercial spaceflight is now becoming accessible to members of the public, many of whom would previously have been excluded owing to unsatisfactory fitness or the presence of cardiorespiratory diseases. While data exist on the effects of gravitational and acceleration (G) forces on human physiology, data on the effects of the aerospace environment in unselected members of the public, and particularly in those with clinically significant pathology, are limited. Although short in duration, these high acceleration forces can potentially either impair the experience or, more seriously, pose a risk to health in some individuals. Rather than expose individuals with existing pathology to G forces to collect data, computational modelling might be useful to predict the nature and severity of cardiovascular diseases that are of sufficient risk to restrict access, require modification, or suggest further investigation or training before flight. In this Review, we explore state-of-the-art, zero-dimensional, compartmentalized models of human cardiovascular pathophysiology that can be used to simulate the effects of acceleration forces, homeostatic regulation and ventilation-perfusion matching, using data generated by long-arm centrifuge facilities of the US National Aeronautics and Space Administration and the European Space Agency to risk stratify individuals and help to improve safety in commercial suborbital spaceflight.
Assuntos
Doenças Cardiovasculares , Voo Espacial , Humanos , Doenças Cardiovasculares/fisiopatologia , Doenças Cardiovasculares/diagnóstico , Medição de Risco , Simulação por Computador , Astronautas , Modelos Cardiovasculares , Ausência de Peso/efeitos adversosRESUMO
BACKGROUND: Triple antithrombotic therapy (TAT) with aspirin, a P2Y12 inhibitor, and oral anticoagulation in patients with atrial fibrillation (AF) undergoing percutaneous coronary intervention (PCI) raises concerns about increased bleeding. Regimens incorporating more potent P2Y12 inhibitors over clopidogrel have not been investigated adequately. RESEARCH DESIGN AND METHODS: A retrospective observational study was performed on 387 patients with AF receiving TAT for 1 month (n = 236) or ≤1 week (n = 151) after PCI. Major and clinically relevant non-major bleeding and major adverse cardiac and cerebrovascular events (MACCE) were assessed up to 30 days post-procedure. RESULTS: Bleeding was less frequent with ≤1 week versus 1 month of TAT (3.3 vs 9.3%; p = 0.025) while MACCE were similar (4.6 vs 4.7%; p = 0.998). No differences in bleeding or MACCE were observed between ticagrelor/prasugrel and clopidogrel regimens. For patients receiving ≤1 week of TAT, no excess of MACCE was seen in the subgroup given no further aspirin post-PCI compared with those given aspirin for up to 1 week (3.6 vs 5.2%). CONCLUSIONS: TAT post-PCI for ≤1 week was associated with less bleeding despite greater use of ticagrelor/prasugrel but similar MACCE versus 1-month TAT. These findings support further studies on safety and efficacy of dual therapy with ticagrelor/prasugrel immediately after PCI.
Assuntos
Anticoagulantes , Aspirina , Fibrilação Atrial , Clopidogrel , Quimioterapia Combinada , Hemorragia , Intervenção Coronária Percutânea , Inibidores da Agregação Plaquetária , Antagonistas do Receptor Purinérgico P2Y , Humanos , Fibrilação Atrial/tratamento farmacológico , Fibrilação Atrial/complicações , Intervenção Coronária Percutânea/métodos , Masculino , Feminino , Estudos Retrospectivos , Idoso , Pessoa de Meia-Idade , Hemorragia/induzido quimicamente , Aspirina/administração & dosagem , Aspirina/uso terapêutico , Aspirina/efeitos adversos , Clopidogrel/administração & dosagem , Clopidogrel/uso terapêutico , Clopidogrel/efeitos adversos , Inibidores da Agregação Plaquetária/administração & dosagem , Inibidores da Agregação Plaquetária/efeitos adversos , Inibidores da Agregação Plaquetária/uso terapêutico , Anticoagulantes/administração & dosagem , Anticoagulantes/efeitos adversos , Anticoagulantes/uso terapêutico , Antagonistas do Receptor Purinérgico P2Y/administração & dosagem , Antagonistas do Receptor Purinérgico P2Y/uso terapêutico , Antagonistas do Receptor Purinérgico P2Y/efeitos adversos , Fatores de Tempo , Resultado do Tratamento , Fibrinolíticos/administração & dosagem , Fibrinolíticos/uso terapêutico , Fibrinolíticos/efeitos adversos , Idoso de 80 Anos ou mais , Ticagrelor/administração & dosagem , Ticagrelor/uso terapêutico , Ticagrelor/efeitos adversosRESUMO
Murray's law has been viewed as a fundamental law of physiology. Relating blood flow ([Formula: see text]) to vessel diameter (D) ([Formula: see text]·â·D3), it dictates minimum lumen area (MLA) targets for coronary bifurcation percutaneous coronary intervention (PCI). The cubic exponent (3.0), however, has long been disputed, with alternative theoretical derivations, arguing this should be closer to 2.33 (7/3). The aim of this meta-analysis was to quantify the optimum flow-diameter exponent in human and mammalian coronary arteries. We conducted a systematic review and meta-analysis of all articles quantifying an optimum flow-diameter exponent for mammalian coronary arteries within the Cochrane library, PubMed Medline, Scopus, and Embase databases on 20 March 2023. A random-effects meta-analysis was used to determine a pooled flow-diameter exponent. Risk of bias was assessed with the National Institutes of Health (NIH) quality assessment tool, funnel plots, and Egger regression. From a total of 4,772 articles, 18 were suitable for meta-analysis. Studies included data from 1,070 unique coronary trees, taken from 372 humans and 112 animals. The pooled flow diameter exponent across both epicardial and transmural arteries was 2.39 (95% confidence interval: 2.24-2.54; I2 = 99%). The pooled exponent of 2.39 showed very close agreement with the theoretical exponent of 2.33 (7/3) reported by Kassab and colleagues. This exponent may provide a more accurate description of coronary morphometric scaling in human and mammalian coronary arteries, as compared with Murray's original law. This has important implications for the assessment, diagnosis, and interventional treatment of coronary artery disease.
Assuntos
Circulação Coronária , Vasos Coronários , Animais , Humanos , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/fisiopatologia , Vasos Coronários/diagnóstico por imagem , Modelos Cardiovasculares , Intervenção Coronária PercutâneaRESUMO
BACKGROUND: The practical application of 'virtual' (computed) fractional flow reserve (vFFR) based on invasive coronary angiogram (ICA) images is unknown. The objective of this cohort study was to investigate the potential of vFFR to guide the management of unselected patients undergoing ICA. The hypothesis was that it changes management in >10% of cases. METHODS: vFFR was computed using the Sheffield VIRTUheart system, at five hospitals in the North of England, on 'all-comers' undergoing ICA for non-ST-elevation myocardial infarction acute coronary syndrome (ACS) and chronic coronary syndrome (CCS). The cardiologists' management plan (optimal medical therapy, percutaneous coronary intervention (PCI), coronary artery bypass surgery or 'more information required') and confidence level were recorded after ICA, and again after vFFR disclosure. RESULTS: 517 patients were screened; 320 were recruited: 208 with ACS and 112 with CCS. The median vFFR was 0.82 (0.70-0.91). vFFR disclosure did not change the mean number of significantly stenosed vessels per patient (1.16 (±0.96) visually and 1.18 (±0.92) with vFFR (p=0.79)). A change in intended management following vFFR disclosure occurred in 22% of all patients; in the ACS cohort, there was a 62% increase in the number planned for medical management, and in the CCS cohort, there was a 31% increase in the number planned for PCI. In all patients, vFFR disclosure increased physician confidence from 8 of 10 (7.33-9) to 9 of 10 (8-10) (p<0.001). CONCLUSION: The addition of vFFR to ICA changed intended management strategy in 22% of patients, provided a detailed and specific 'all-in-one' anatomical and physiological assessment of coronary artery disease, and was accompanied by augmentation of the operator's confidence in the treatment strategy.
Assuntos
Síndrome Coronariana Aguda , Angiografia Coronária , Reserva Fracionada de Fluxo Miocárdico , Humanos , Reserva Fracionada de Fluxo Miocárdico/fisiologia , Feminino , Masculino , Pessoa de Meia-Idade , Síndrome Coronariana Aguda/terapia , Síndrome Coronariana Aguda/fisiopatologia , Síndrome Coronariana Aguda/diagnóstico por imagem , Idoso , Intervenção Coronária Percutânea/métodos , Inglaterra , Infarto do Miocárdio/terapia , Infarto do Miocárdio/fisiopatologia , Infarto do Miocárdio/diagnóstico por imagem , Doença da Artéria Coronariana/fisiopatologia , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/terapiaRESUMO
OBJECTIVES: Cardiac surgery for coronary artery disease was dramatically reduced during the first wave of the COVID-19 pandemic. Many patients with disease ordinarily treated with coronary artery bypass grafting (CABG) instead underwent percutaneous coronary intervention (PCI). We sought to describe 12-month outcomes following PCI in patients who would typically have undergone CABG. METHODS: Between March 1 and July 31, 2020, patients who received revascularization with PCI when CABG would have been the primary choice of revascularization were enrolled in the prospective, multicenter UK-ReVasc Registry. We evaluated the following major adverse cardiovascular events at 12 months: all-cause mortality, myocardial infarction, repeat revascularization, stroke, major bleeding, and stent thrombosis. RESULTS: A total of 215 patients were enrolled across 45 PCI centers in the United Kingdom. Twelve-month follow up data were obtained for 97% of the cases. There were 9 deaths (4.3%), 5 myocardial infarctions (2.4%), 12 repeat revascularizations (5.7%), 1 stroke (0.5%), 3 major bleeds (1.4%), and no cases of stent thrombosis. No difference in the primary endpoint was observed between patients who received complete vs incomplete revascularization (residual SYNTAX score £ 8 vs > 8) (P = .22). CONCLUSIONS: In patients with patterns of coronary disease in whom CABG would have been the primary therapeutic choice outside of the pandemic, PCI was associated with acceptable outcomes at 12 months of follow-up. Contemporary randomized trials that compare PCI to CABG in such patient cohorts may be warranted.
RESUMO
BACKGROUND: Myocardial ischaemia results from insufficient coronary blood flow. Computed virtual fractional flow reserve (vFFR) allows quantification of proportional flow loss without the need for invasive pressure-wire testing. In the current study, we describe a novel, conductivity model of side branch flow, referred to as 'leak'. This leak model is a function of taper and local pressure, the latter of which may change radically when focal disease is present. This builds upon previous techniques, which either ignore side branch flow, or rely purely on anatomical factors. This study aimed to describe a new, conductivity model of side branch flow and compare this with established anatomical models. METHODS AND RESULTS: The novel technique was used to quantify vFFR, distal absolute flow (Qd) and microvascular resistance (CMVR) in 325 idealised 1D models of coronary arteries, modelled from invasive clinical data. Outputs were compared to an established anatomical model of flow. The conductivity model correlated and agreed with the reference model for vFFR (r = 0.895, p < 0.0001; ï¼0.02, 95% CI 0.00 to ï¼ 0.22), Qd (r = 0.959, p < 0.0001; -5.2 mL/min, 95% CI -52.2 to ï¼13.0) and CMVR (r = 0.624, p < 0.0001; ï¼50 Woods Units, 95% CI -325 to ï¼2549). CONCLUSION: Agreement between the two techniques was closest for vFFR, with greater proportional differences seen for Qd and CMVR. The conductivity function assumes vessel taper was optimised for the healthy state and that CMVR was not affected by local disease. The latter may be addressed with further refinement of the technique or inferred from complementary image data. The conductivity technique may represent a refinement of current techniques for modelling coronary side-branch flow. Further work is needed to validate the technique against invasive clinical data.
Assuntos
Doença da Artéria Coronariana , Estenose Coronária , Reserva Fracionada de Fluxo Miocárdico , Humanos , Vasos Coronários , Angiografia Coronária/métodos , Hemodinâmica , Valor Preditivo dos TestesRESUMO
Aims: Over the last ten years, virtual Fractional Flow Reserve (vFFR) has improved the utility of Fractional Flow Reserve (FFR), a globally recommended assessment to guide coronary interventions. Although the speed of vFFR computation has accelerated, techniques utilising full 3D computational fluid dynamics (CFD) solutions rather than simplified analytical solutions still require significant time to compute. Methods and results: This study investigated the speed, accuracy and cost of a novel 3D-CFD software method based upon a graphic processing unit (GPU) computation, compared with the existing fastest central processing unit (CPU)-based 3D-CFD technique, on 40 angiographic cases. The novel GPU simulation was significantly faster than the CPU method (median 31.7 s (Interquartile Range (IQR) 24.0-44.4s) vs. 607.5 s (490-964 s), P < 0.0001). The novel GPU technique was 99.6% (IQR 99.3-99.9) accurate relative to the CPU method. The initial cost of the GPU hardware was greater than the CPU (£4080 vs. £2876), but the median energy consumption per case was significantly less using the GPU method (8.44 (6.80-13.39) Wh vs. 2.60 (2.16-3.12) Wh, P < 0.0001). Conclusion: This study demonstrates that vFFR can be computed using 3D-CFD with up to 28-fold acceleration than previous techniques with no clinically significant sacrifice in accuracy.
RESUMO
Background: Increased coronary microvascular resistance (CMVR) is associated with coronary microvascular dysfunction (CMD). Although CMD is more common in women, sex-specific differences in CMVR have not been demonstrated previously. Aim: To compare CMVR between men and women being investigated for chest pain. Methods and results: We used a computational fluid dynamics (CFD) model of human coronary physiology to calculate absolute CMVR based on invasive coronary angiographic images and pressures in 203 coronary arteries from 144 individual patients. CMVR was significantly higher in women than men (860 [650-1,205] vs. 680 [520-865]â WU, Z = -2.24, p = 0.025). None of the other major subgroup comparisons yielded any differences in CMVR. Conclusion: CMVR was significantly higher in women compared with men. These sex-specific differences may help to explain the increased prevalence of CMD in women.
RESUMO
The past decade has seen a dramatic rise in consumer technologies able to monitor a variety of cardiovascular parameters. Such devices initially recorded markers of exercise, but now include physiological and health-care focused measurements. The public are keen to adopt these devices in the belief that they are useful to identify and monitor cardiovascular disease. Clinicians are therefore often presented with health app data accompanied by a diverse range of concerns and queries. Herein, we assess whether these devices are accurate, their outputs validated, and whether they are suitable for professionals to make management decisions. We review underpinning methods and technologies and explore the evidence supporting the use of these devices as diagnostic and monitoring tools in hypertension, arrhythmia, heart failure, coronary artery disease, pulmonary hypertension, and valvular heart disease. Used correctly, they might improve health care and support research.
Assuntos
Doenças Cardiovasculares , Sistema Cardiovascular , Doença da Artéria Coronariana , Insuficiência Cardíaca , Dispositivos Eletrônicos Vestíveis , Humanos , Doenças Cardiovasculares/diagnósticoRESUMO
Aims: Ischaemic heart disease results from insufficient coronary blood flow. Direct measurement of absolute flow (mL/min) is feasible, but has not entered routine clinical practice in most catheterization laboratories. Interventional cardiologists, therefore, rely on surrogate markers of flow. Recently, we described a computational fluid dynamics (CFD) method for predicting flow that differentiates inlet, side branch, and outlet flows during angiography. In the current study, we evaluate a new method that regionalizes flow along the length of the artery. Methods and results: Three-dimensional coronary anatomy was reconstructed from angiograms from 20 patients with chronic coronary syndrome. All flows were computed using CFD by applying the pressure gradient to the reconstructed geometry. Side branch flow was modelled as a porous wall boundary. Side branch flow magnitude was based on morphometric scaling laws with two models: a homogeneous model with flow loss along the entire arterial length; and a regionalized model with flow proportional to local taper. Flow results were validated against invasive measurements of flow by continuous infusion thermodilution (Coroventis™, Abbott). Both methods quantified flow relative to the invasive measures: homogeneous (r 0.47, P 0.006; zero bias; 95% CI -168 to +168 mL/min); regionalized method (r 0.43, P 0.013; zero bias; 95% CI -175 to +175 mL/min). Conclusion: During angiography and pressure wire assessment, coronary flow can now be regionalized and differentiated at the inlet, outlet, and side branches. The effect of epicardial disease on agreement suggests the model may be best targeted at cases with a stenosis close to side branches.
RESUMO
Background: Ischaemia with nonobstructive coronary arteries is most commonly caused by coronary microvascular dysfunction but remains difficult to diagnose without invasive testing. Myocardial blood flow (MBF) can be quantified noninvasively on stress perfusion cardiac magnetic resonance (CMR) or positron emission tomography but neither is routinely used in clinical practice due to practical and technical constraints. Quantification of coronary sinus (CS) flow may represent a simpler method for CMR MBF quantification. 4D flow CMR offers comprehensive intracardiac and transvalvular flow quantification. However, it is feasibility to quantify MBF remains unknown. Methods: Patients with acute myocardial infarction (MI) and healthy volunteers underwent CMR. The CS contours were traced from the 2-chamber view. A reformatted phase contrast plane was generated through the CS, and flow was quantified using 4D flow CMR over the cardiac cycle and normalised for myocardial mass. MBF and resistance (MyoR) was determined in ten healthy volunteers, ten patients with myocardial infarction (MI) without microvascular obstruction (MVO), and ten with known MVO. Results: MBF was quantified in all 30 subjects. MBF was highest in healthy controls (123.8 ± 48.4 mL/min), significantly lower in those with MI (85.7 ± 30.5 mL/min), and even lower in those with MI and MVO (67.9 ± 29.2 mL/min/) (P < 0.01 for both differences). Compared with healthy controls, MyoR was higher in those with MI and even higher in those with MI and MVO (0.79 (±0.35) versus 1.10 (±0.50) versus 1.50 (±0.69), P=0.02). Conclusions: MBF and MyoR can be quantified from 4D flow CMR. Resting MBF was reduced in patients with MI and MVO.
RESUMO
Fractional flow reserve (FFR) is the current gold-standard invasive assessment of coronary artery disease (CAD). FFR reports coronary blood flow (CBF) as a fraction of a hypothetical and unknown normal value. Although used routinely to diagnose CAD and guide treatment, how accurately FFR predicts actual CBF changes remains unknown. Here we compared fractional CBF with the absolute CBF (aCBF in mL/min), measured with a computational method during standard angiography and pressure-wire assessment, on 203 diseased arteries (143 patients). We found a substantial correlation between the two measurements (r 0.89, Cohen's Kappa 0.71). Concordance between fractional and absolute CBF reduction was high when FFR was >0.80 (91%), but reduced when FFR was ≤0.80 (81%), 0.70-0.80 (68%) and, particularly 0.75-0.80 (62%). Discordance was associated with coronary microvascular resistance, vessel diameter and mass of myocardium subtended, all factors to which FFR is agnostic. Assessment of aCBF complements FFR, and may be valuable to assess CBF, particularly in cases within the FFR 'grey-zone'.
RESUMO
AIMS: Coronary artery stents have profound effects on arterial function by altering fluid flow mass transport and wall shear stress. We developed a new integrated methodology to analyse the effects of stents on mass transport and shear stress to inform the design of haemodynamically-favourable stents. METHODS AND RESULTS: Stents were deployed in model vessels followed by tracking of fluorescent particles under flow. Parallel analyses involved high-resolution micro-computed tomography scanning followed by computational fluid dynamics simulations to assess wall shear stress distribution. Several stent designs were analysed to assess whether the workflow was robust for diverse strut geometries. Stents had striking effects on fluid flow streamlines, flow separation or funnelling, and the accumulation of particles at areas of complex geometry that were tightly coupled to stent shape. CFD analysis revealed that stents had a major influence on wall shear stress magnitude, direction and distribution and this was highly sensitive to geometry. CONCLUSIONS: Integration of particle tracking with CFD allows assessment of fluid flow and shear stress in stented arteries in unprecedented detail. Deleterious flow perturbations, such as accumulation of particles at struts and non-physiological shear stress, were highly sensitive to individual stent geometry. Novel designs for stents should be tested for mass transport and shear stress which are important effectors of vascular health and repair.
Assuntos
Hidrodinâmica , Modelos Cardiovasculares , Prótese Vascular , Simulação por Computador , Vasos Coronários , Hemodinâmica , Stents , Estresse Mecânico , Microtomografia por Raio-XAssuntos
Angina Pectoris , Circulação Coronária , Catéteres , Angiografia Coronária , Hemodinâmica , HumanosRESUMO
OBJECTIVE: We aim to validate four-dimensional flow cardiovascular magnetic resonance (4D flow CMR) peak velocity tracking methods for measuring the peak velocity of mitral inflow against Doppler echocardiography. METHOD: Fifty patients were recruited who had 4D flow CMR and Doppler Echocardiography. After transvalvular flow segmentation using established valve tracking methods, peak velocity was automatically derived using three-dimensional streamlines of transvalvular flow. In addition, a static-planar method was used at the tip of mitral valve to mimic Doppler technique. RESULTS: Peak E-wave mitral inflow velocity was comparable between TTE and the novel 4D flow automated dynamic method (0.9 ± 0.5 vs 0.94 ± 0.6 m/s; p = 0.29) however there was a statistically significant difference when compared with the static planar method (0.85 ± 0.5 m/s; p = 0.01). Median A-wave peak velocity was also comparable across TTE and the automated dynamic streamline (0.77 ± 0.4 vs 0.76 ± 0.4 m/s; p = 0.77). A significant difference was seen with the static planar method (0.68 ± 0.5 m/s; p = 0.04). E/A ratio was comparable between TTE and both the automated dynamic and static planar method (1.1 ± 0.7 vs 1.15 ± 0.5 m/s; p = 0.74 and 1.15 ± 0.5 m/s; p = 0.5 respectively). Both novel 4D flow methods showed good correlation with TTE for E-wave (dynamic method; r = 0.70; P < 0.001 and static-planar method; r = 0.67; P < 0.001) and A-wave velocity measurements (dynamic method; r = 0.83; P < 0.001 and static method; r = 0.71; P < 0.001). The automated dynamic method demonstrated excellent intra/inter-observer reproducibility for all parameters. CONCLUSION: Automated dynamic peak velocity tracing method using 4D flow CMR is comparable to Doppler echocardiography for mitral inflow assessment and has excellent reproducibility for clinical use.
Assuntos
Imageamento por Ressonância Magnética , Valva Mitral , Velocidade do Fluxo Sanguíneo , Humanos , Espectroscopia de Ressonância Magnética , Valva Mitral/diagnóstico por imagem , Variações Dependentes do Observador , Valor Preditivo dos Testes , Reprodutibilidade dos TestesRESUMO
Background: Quantification of coronary blood flow is used to evaluate coronary artery disease, but our understanding of flow through branched systems is poor. Murray's law defines coronary morphometric scaling, the relationship between flow (Q) and vessel diameter (D) and is the basis for minimum lumen area targets when intervening on bifurcation lesions. Murray's original law (Q α DP) dictates that the exponent (P) is 3.0, whilst constant blood velocity throughout the system would suggest an exponent of 2.0. In human coronary arteries, the value of Murray's exponent remains unknown. Aim: To establish the exponent in Murray's power law relationship that best reproduces coronary blood flows (Q) and microvascular resistances (Rmicro) in a bifurcating coronary tree. Methods and Results: We screened 48 cases, and were able to evaluate inlet Q and Rmicro in 27 branched coronary arteries, taken from 20 patients, using a novel computational fluid dynamics (CFD) model which reconstructs 3D coronary anatomy from angiography and uses pressure-wire measurements to compute Q and Rmicro distribution in the main- and side-branches. Outputs were validated against invasive measurements using a Rayflow™ catheter. A Murray's power law exponent of 2.15 produced the strongest correlation and closest agreement with inlet Q (zero bias, r = 0.47, p = 0.006) and an exponent of 2.38 produced the strongest correlation and closest agreement with Rmicro (zero bias, r = 0.66, p = 0.0001). Conclusions: The optimal power law exponents for Q and Rmicro were not 3.0, as dictated by Murray's Law, but 2.15 and 2.38 respectively. These data will be useful in assessing patient-specific coronary physiology and tailoring revascularisation decisions.
RESUMO
Nearly half of all patients with angina have non-obstructive coronary artery disease (ANOCA); this is an umbrella term comprising heterogeneous vascular disorders, each with disparate pathophysiology and prognosis. Approximately two-thirds of patients with ANOCA have coronary microvascular disease (CMD). CMD can be secondary to architectural changes within the microcirculation or secondary to vasomotor dysfunction. An inability of the coronary vasculature to augment blood flow in response to heightened myocardial demand is defined as an impaired coronary flow reserve (CFR), which can be measured non-invasively, using imaging, or invasively during cardiac catheterisation. Impaired CFR is associated with myocardial ischaemia and adverse cardiovascular outcomes.The CMD workstream is part of the cardiovascular partnership between the British Heart Foundation and The National Institute for Health Research in the UK and comprises specialist cardiac centres with expertise in coronary physiology assessment. This document outlines the two main modalities (thermodilution and Doppler techniques) for estimation of coronary flow, vasomotor testing using acetylcholine, and outlines a standard operating procedure that could be considered for adoption by national networks. Accurate and timely disease characterisation of patients with ANOCA will enable clinicians to tailor therapy according to their patients' coronary physiology. This has been shown to improve patients' quality of life and may lead to improved cardiovascular outcomes in the long term.
Assuntos
Doença da Artéria Coronariana , Angina Microvascular , Isquemia Miocárdica , Humanos , Doença da Artéria Coronariana/diagnóstico , Doença da Artéria Coronariana/terapia , Qualidade de Vida , Consenso , Microcirculação/fisiologia , Vasos Coronários/diagnóstico por imagem , Circulação Coronária/fisiologia , Angiografia CoronáriaRESUMO
Aims: Angiography-derived fractional flow reserve (angio-FFR) permits physiological lesion assessment without the need for an invasive pressure wire or induction of hyperaemia. However, accuracy is limited by assumptions made when defining the distal boundary, namely coronary microvascular resistance (CMVR). We sought to determine whether machine learning (ML) techniques could provide a patient-specific estimate of CMVR and therefore improve the accuracy of angio-FFR. Methods and results: Patients with chronic coronary syndromes underwent coronary angiography with FFR assessment. Vessel-specific CMVR was computed using a three-dimensional computational fluid dynamics simulation with invasively measured proximal and distal pressures applied as boundary conditions. Predictive models were created using non-linear autoregressive moving average with exogenous input (NARMAX) modelling with computed CMVR as the dependent variable. Angio-FFR (VIRTUheart™) was computed using previously described methods. Three simulations were run: using a generic CMVR value (Model A); using ML-predicted CMVR based upon simple clinical data (Model B); and using ML-predicted CMVR also incorporating echocardiographic data (Model C). The diagnostic (FFR ≤ or >0.80) and absolute accuracies of these models were compared. Eighty-four patients underwent coronary angiography with FFR assessment in 157 vessels. The mean measured FFR was 0.79 (±0.15). The diagnostic and absolute accuracies of each personalized model were: (A) 73% and ±0.10; (B) 81% and ±0.07; and (C) 89% and ±0.05, P < 0.001. Conclusion: The accuracy of angio-FFR was dependent in part upon CMVR estimation. Personalization of CMVR from standard clinical data resulted in a significant reduction in angio-FFR error.