Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Bacteriol ; 205(7): e0008723, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37341600

RESUMO

Streptococcus pneumoniae is an agent of otitis media, septicemia, and meningitis and remains the leading cause of community-acquired pneumonia regardless of vaccine use. Of the various strategies that S. pneumoniae takes to enhance its potential to colonize the human host, quorum sensing (QS) is an intercellular communication process that provides coordination of gene expression at a community level. Numerous putative QS systems are identifiable in the S. pneumoniae genome, but their gene-regulatory activities and contributions to fitness have yet to be fully evaluated. To contribute to assessing regulatory activities of rgg paralogs present in the D39 genome, we conducted transcriptomic analysis of mutants of six QS regulators. Our results find evidence that at least four QS regulators impact the expression of a polycistronic operon (encompassing genes spd_1517 to spd_1513) that is directly controlled by the Rgg/SHP1518 QS system. As an approach to unravel the convergent regulation placed on the spd_1513-1517 operon, we deployed transposon mutagenesis screening in search of upstream regulators of the Rgg/SHP1518 QS system. The screen identified two types of insertion mutants that result in increased activity of Rgg1518-dependent transcription, one type being where the transposon inserted into pepO, an annotated endopeptidase, and the other type being insertions in spxB, a pyruvate oxidase. We demonstrate that pneumococcal PepO degrades SHP1518 to prevent activation of Rgg/SHP1518 QS. Moreover, the glutamic acid residue in the conserved "HExxH" domain is indispensable for the catalytic function of PepO. Finally, we confirmed the metalloendopeptidase property of PepO, which requires zinc ions, but not other ions, to facilitate peptidyl hydrolysis. IMPORTANCE Streptococcus pneumoniae uses quorum sensing to communicate and regulate virulence. In our study, we focused on one Rgg quorum sensing system (Rgg/SHP1518) and found that multiple other Rgg regulators also control it. We further identified two enzymes that inhibit Rgg/SHP1518 signaling and revealed and validated one enzyme's mechanisms for breaking down quorum sensing signaling molecules. Our findings shed light on the complex regulatory network of quorum sensing in Streptococcus pneumoniae.


Assuntos
Percepção de Quorum , Streptococcus pneumoniae , Humanos , Percepção de Quorum/fisiologia , Streptococcus pneumoniae/genética , Proteínas de Bactérias/genética , Virulência , Ligação Proteica , Regulação Bacteriana da Expressão Gênica
2.
Methods Mol Biol ; 2588: 201-216, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36418690

RESUMO

Selective markers employed in classical mutagenesis methods using natural genetic transformation can affect gene expression, risk phenotypic effects, and accumulate as unwanted genes during successive mutagenesis cycles. In this chapter, we present a protocol for markerless genome editing in Streptococcus mutans and Streptococcus pneumoniae achieved with an efficient method for natural transformation. High yields of transformants are obtained by combining the unimodal state of competence developed after treatment of S. mutans with sigX-inducing peptide pheromone (XIP) in a chemically defined medium (CDM) or of S. pneumoniae with the competence-stimulating peptide (CSP) together with use of a donor amplicon carrying extensive flanking homology. This combination ensures efficient and precise integration of a new allele by the recombination machinery present in competent cells.


Assuntos
Proteínas de Bactérias , Edição de Genes , Proteínas de Bactérias/metabolismo , Streptococcus/genética , Streptococcus/metabolismo , Streptococcus mutans/genética , Peptídeos/metabolismo
3.
Mol Microbiol ; 116(2): 381-396, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33754381

RESUMO

The competence pili of transformable Gram-positive species are phylogenetically related to the diverse and widespread class of extracellular filamentous organelles known as type IV pili. In Gram-negative bacteria, type IV pili act through dynamic cycles of extension and retraction to carry out diverse activities including attachment, motility, protein secretion, and DNA uptake. It remains unclear whether competence pili in Gram-positive species exhibit similar dynamic activity, and their mechanism of action for DNA uptake remains unclear. They are hypothesized to either (1) leave transient cavities in the cell wall that facilitate DNA passage, (2) form static adhesins to enrich DNA near the cell surface for subsequent uptake by membrane-embedded transporters, or (3) play an active role in translocating bound DNA via dynamic activity. Here, we use a recently described pilus labeling approach to demonstrate that competence pili in Streptococcus pneumoniae are highly dynamic structures that rapidly extend and retract from the cell surface. By labeling the principal pilus monomer, ComGC, with bulky adducts, we further demonstrate that pilus retraction is essential for natural transformation. Together, our results suggest that Gram-positive competence pili in other species may also be dynamic and retractile structures that play an active role in DNA uptake.


Assuntos
Transporte Biológico Ativo/fisiologia , Competência de Transformação por DNA/fisiologia , DNA Bacteriano/metabolismo , Fímbrias Bacterianas/metabolismo , Streptococcus pneumoniae/metabolismo , Parede Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Fímbrias/metabolismo , Transformação Bacteriana/genética , Transformação Bacteriana/fisiologia
4.
Front Mol Biosci ; 7: 61, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32435654

RESUMO

The alternative streptococcal σ-factor and master competence regulator, σX, stimulates transcription from competence promoters, in vitro. As the only known alternative σ-factor in streptococci, σX expression is tightly controlled in each species and has a specific physiological role. Pneumococcal transformation also requires the DNA binding activity of ComW, a known σX activator and stabilizer. Mutations to the housekeeping σ factor, σA, partially alleviate the ComW requirement, suggesting that ComW is a key player in the σ factor swap during the pneumococcal competence response. However, there is no evidence of a direct ComW - RNA polymerase interaction. Furthermore, if and how ComW functions directly at combox promoters is still unknown. Here we report that a DNA-binding ComW variant, ComΔ6, can stimulate transcription from σX promoters in vitro.

5.
Mol Microbiol ; 112(4): 1308-1325, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31396996

RESUMO

Natural transformation mediates horizontal gene transfer, and thereby promotes exchange of antibiotic resistance and virulence traits among bacteria. Streptococcus pneumoniae, the first known transformable bacterium, rapidly activates and then terminates the transformation state, but it is unclear how the bacterium accomplishes this rapid turn-around at the protein level. This work determined the transcriptomic and proteomic dynamics during the window of pneumococcal transformation. RNA sequencing revealed a nearly uniform temporal pattern of rapid transcriptional activation and subsequent shutdown for the genes encoding transformation proteins. In contrast, mass spectrometry analysis showed that the majority of transformation proteins were substantially preserved beyond the window of transformation. However, ComEA and ComEC, major components of the DNA uptake apparatus for transformation, were completely degraded at the end of transformation. Further mutagenesis screening revealed that the membrane-associated serine protease HtrA mediates selective degradation of ComEA and ComEC, strongly suggesting that breakdown of the DNA uptake apparatus by HtrA is an important mechanism for termination of pneumococcal transformation. Finally, our mutagenesis analysis showed that HtrA inhibits natural transformation of Streptococcus mitis and Streptococcus gordonii. Together, this work has revealed that HtrA regulates the level and duration of natural transformation in multiple streptococcal species.


Assuntos
Serina Endopeptidases/metabolismo , Transformação Bacteriana/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA/metabolismo , Transferência Genética Horizontal , Proteômica , Serina Endopeptidases/genética , Serina Proteases/metabolismo , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo , Transcriptoma/genética , Transformação Genética/genética , Virulência/genética
6.
J Biol Chem ; 294(29): 11101-11118, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31160340

RESUMO

Natural genetic transformation via horizontal gene transfer enables rapid adaptation to dynamic environments and contributes to both antibiotic resistance and vaccine evasion among bacterial populations. In Streptococcus pneumoniae (pneumococcus), transformation occurs when cells enter competence, a transient state in which cells express the competence master regulator, SigX (σΧ), an alternative σ factor (σ), and a competence co-regulator, ComW. Together, ComW and σX facilitate expression of the genes required for DNA uptake and genetic recombination. SigX activity depends on ComW, as ΔcomW cells transcribe late genes and transform at levels 10- and 10,000-fold below that of WT cells, respectively. Previous findings suggest that ComW functions during assembly of the RNA polymerase-σX holoenzyme to help promote transcription from σX-targeted promoters. However, it remains unknown how ComW facilitates holoenzyme assembly. As ComW seems to be unique to Gram-positive cocci and has no sequence similarity with known transcriptional activators, here we used Rosetta to generate an ab initio model of pneumococcal ComW's 3D-structure. Using this model as a basis for further biochemical, biophysical, and genetic investigations into the molecular features important for its function, we report that ComW is a predicted globular protein and that it interacts with DNA, independently of DNA sequence. We also identified conserved motifs in ComW and show that key residues in these motifs contribute to DNA binding. Lastly, we provide evidence that ComW's DNA-binding activity is important for transformation in pneumococcus. Our findings begin to fill the gaps in understanding how ComW regulates σΧ activity during bacterial natural transformation.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fator sigma/metabolismo , Streptococcus pneumoniae/metabolismo , Transformação Genética , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biopolímeros/química , Biopolímeros/metabolismo , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Transferência Genética Horizontal , Genes Bacterianos , Modelos Moleculares , Mutação , Regiões Promotoras Genéticas , Ligação Proteica , Homologia de Sequência de Aminoácidos , Fator sigma/química , Fator sigma/genética , Streptococcus pneumoniae/genética
7.
J Bacteriol ; 201(13)2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30988030

RESUMO

DNA uptake by natural competence is a central process underlying the genetic plasticity, biology, and virulence of the human respiratory opportunistic pathogen Streptococcus pneumoniae A study reported in this issue (J. Slager, R. Aprianto, and J.-W. Veening, J. Bacteriol. 201:e00780-18, https://doi.org/10.1128/JB.00780-18) combined deep-genome annotation and high-resolution transcriptome analyses to considerably extend the previous model of temporal regulation of competence at the operon and component gene levels. That extended study also provides a playbook for updating, refining, and extending genomic data sets and making them publicly available.


Assuntos
Regulon , Streptococcus pneumoniae/genética , Humanos , Análise de Sequência de RNA , Análise de Sistemas , Transcriptoma
8.
Artigo em Inglês | MEDLINE | ID: mdl-31001492

RESUMO

The mitis group of streptococci comprises species that are common colonizers of the naso-oral-pharyngeal tract of humans. Streptococcus pneumoniae and Streptococcus mitis are close relatives and share ~60-80% of orthologous genes, but still present striking differences in pathogenic potential toward the human host. S. mitis has long been recognized as a reservoir of antibiotic resistance genes for S. pneumoniae, as well as a source for capsule polysaccharide variation, leading to resistance and vaccine escape. Both species share the ability to become naturally competent, and in this context, competence-associated killing mechanisms such as fratricide are thought to play an important role in interspecies gene exchange. Here, we explore the general mechanism of natural genetic transformation in the two species and touch upon the fundamental clinical and evolutionary implications of sharing similar competence, fratricide mechanisms, and a large fraction of their genomic DNA.


Assuntos
Competência de Transformação por DNA , Transferência Genética Horizontal , Streptococcus mitis/genética , Streptococcus pneumoniae/genética , Transformação Bacteriana , Genoma Bacteriano
9.
Lab Chip ; 19(4): 682-692, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30657515

RESUMO

Streptococcus pneumoniae (pneumococcus), a deadly bacterial human pathogen, uses genetic transformation to gain antibiotic resistance. Genetic transformation begins when a pneumococcal strain in a transient specialized physiological state called competence, attacks and lyses another strain, releasing DNA, taking up fragments of the liberated DNA, and integrating divergent genes into its genome. While many steps of the process are known and generally understood, the precise mechanism of this natural genetic transformation is not fully understood and the current standard strategies to study it have limitations in specifically controlling and observing the process in detail. To overcome these limitations, we have developed a droplet microfluidic system for isolating individual episodes of bacterial transformation between two confined cells of pneumococcus. By encapsulating the cells in a 10 µm diameter aqueous droplet, we provide an improved experimental model of genetic transformation, as both participating cells can be identified, and the released DNA is spatially restricted near the attacking strain. Specifically, the bacterial cells, one rifampicin (R) resistant, the other novobiocin (N) and spectinomycin (S) resistant were encapsulated in droplets carried by the fluorinated oil FC-40 with 5% surfactant and allowed to carry out competence-specific attack and DNA uptake (and consequently gain antibiotic resistances) within the droplets. The droplets were then broken, and recombinants were recovered by selective plating with antibiotics. The new droplet system encapsulated 2 or more cells in a droplet with a probability up to 71%, supporting gene transfer rates comparable to standard mixtures of unconfined cells. Thus, confinement in droplets allows characterization of natural genetic transformation during a strictly defined interaction between two confined cells.


Assuntos
Streptococcus pneumoniae/citologia , Streptococcus pneumoniae/genética , Transformação Bacteriana , Antibacterianos/farmacologia , Comunicação Celular/efeitos dos fármacos , Células Cultivadas , DNA Bacteriano/efeitos dos fármacos , DNA Bacteriano/genética , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Resistência Microbiana a Medicamentos/genética , Testes de Sensibilidade Microbiana , Técnicas Analíticas Microfluídicas/instrumentação , Novobiocina/farmacologia , Tamanho da Partícula , Rifampina/farmacologia , Espectinomicina/farmacologia , Streptococcus pneumoniae/efeitos dos fármacos , Propriedades de Superfície , Transformação Bacteriana/efeitos dos fármacos , Transformação Bacteriana/genética
10.
Integr Biol (Camb) ; 11(12): 415-424, 2019 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-31990351

RESUMO

Gene exchange via genetic transformation makes major contributions to antibiotic resistance of the human pathogen, Streptococcus pneumoniae (pneumococcus). The transfers begin when a pneumococcal cell, in a transient specialized physiological state called competence, attacks and lyses another cell, takes up fragments of the liberated DNA, and integrates divergent genes into its genome. Recently, it has been demonstrated that the pneumococcal cells can be enclosed in femtoliter-scale droplets for study of the transformation mechanism, offering the ability to characterize individual cell-cell interactions and overcome the limitations of current methods involving bulk mixed cultures. To determine the relevance and reliability of this new method for study of bacterial genetic transformation, we compared recombination events occurring in 44 recombinants recovered after competence-mediated gene exchange between pairs of cells confined in femtoliter-scale droplets vs. those occurring in exchanges in parallel bulk culture mixtures. The pattern of recombination events in both contexts exhibited the hallmarks of the macro-recombination exchanges previously observed within the more complex natural contexts of biofilms and long-term evolution in the human host.


Assuntos
Técnicas de Transferência de Genes , Microfluídica , Streptococcus pneumoniae , Transformação Bacteriana , Biofilmes , Farmacorresistência Bacteriana , Resistência Microbiana a Medicamentos , Genômica , Sequenciamento Completo do Genoma
11.
PLoS Genet ; 14(6): e1007410, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29897968

RESUMO

Homologous recombination in the genetic transformation model organism Streptococcus pneumoniae is thought to be important in the adaptation and evolution of this pathogen. While competent pneumococci are able to scavenge DNA added to laboratory cultures, large-scale transfers of multiple kb are rare under these conditions. We used whole genome sequencing (WGS) to map transfers in recombinants arising from contact of competent cells with non-competent 'target' cells, using strains with known genomes, distinguished by a total of ~16,000 SNPs. Experiments designed to explore the effect of environment on large scale recombination events used saturating purified donor DNA, short-term cell assemblages on Millipore filters, and mature biofilm mixed cultures. WGS of 22 recombinants for each environment mapped all SNPs that were identical between the recombinant and the donor but not the recipient. The mean recombination event size was found to be significantly larger in cell-to-cell contact cultures (4051 bp in filter assemblage and 3938 bp in biofilm co-culture versus 1815 bp with saturating DNA). Up to 5.8% of the genome was transferred, through 20 recombination events, to a single recipient, with the largest single event incorporating 29,971 bp. We also found that some recombination events are clustered, that these clusters are more likely to occur in cell-to-cell contact environments, and that they cause significantly increased linkage of genes as far apart as 60,000 bp. We conclude that pneumococcal evolution through homologous recombination is more likely to occur on a larger scale in environments that permit cell-to-cell contact.


Assuntos
Comunicação Celular/genética , Recombinação Genética/genética , Streptococcus pneumoniae/genética , Comunicação Celular/fisiologia , DNA/genética , DNA/fisiologia , Evolução Molecular , Rearranjo Gênico/genética , Genoma Bacteriano/genética , Recombinação Homóloga/genética , Polimorfismo de Nucleotídeo Único/genética , Sequenciamento Completo do Genoma/métodos
12.
Sci Rep ; 8(1): 314, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29321514

RESUMO

Pneumococcal flavin reductase (FlaR) is known to be cell-wall associated and possess age dependent antigenicity in children. This study aimed at characterizing FlaR and elucidating its involvement in pneumococcal physiology and virulence. Bioinformatic analysis of FlaR sequence identified three-conserved cysteine residues, suggesting a transition metal-binding capacity. Recombinant FlaR (rFlaR) bound Fe2+ and exhibited FAD-dependent NADP-reductase activity, which increased in the presence of cysteine or excess Fe2+ and inhibited by divalent-chelating agents. flaR mutant was highly susceptible to H2O2 compared to its wild type (WT) and complemented strains, suggesting a role for FlaR in pneumococcal oxidative stress resistance. Additionally, flaR mutant demonstrated significantly decreased mice mortality following intraperitoneal infection. Interestingly, lack of FlaR did not affect the extent of phagocytosis by primary mouse peritoneal macrophages but reduced adhesion to A549 cells compared to the WT and complemented strains. Noteworthy are the findings that immunization with rFlaR elicited protection in mice against intraperitoneal lethal challenge and anti-FlaR antisera neutralized bacterial virulence. Taken together, FlaR's roles in pneumococcal physiology and virulence, combined with its lack of significant homology to human proteins, point towards rFlaR as a vaccine candidate.


Assuntos
Aderência Bacteriana , Proteínas de Bactérias/genética , FMN Redutase/genética , Estresse Oxidativo , Streptococcus pneumoniae/patogenicidade , Animais , Proteínas de Bactérias/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , FMN Redutase/metabolismo , Feminino , Humanos , Macrófagos Peritoneais/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos CBA , Mutação , Fagocitose , Streptococcus pneumoniae/enzimologia , Streptococcus pneumoniae/genética , Virulência/genética
13.
Front Mol Biosci ; 5: 116, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30662898

RESUMO

Natural transformation is regarded as an important mechanism in bacteria that allows for adaptation to different environmental stressors by ensuring genome plasticity. Since the discovery of this phenomenon in Streptococcus pneumoniae, remarkable progress has been made in the understanding of the molecular mechanisms and pathways coordinating this process. Recently, the advent of high-throughput sequencing allows the posing of questions that address the system at a larger scale but also allow for the creation of high-resolution maps of transcription. Thus, while much is already known about genetic competence in streptococci, recent studies continue to reveal intricate novel regulation pathways and components. In this perspective article, we highlight the use of transcriptional profiling and mapping as a valuable resource in the identification and characterization of "hidden gems" pertinent to the natural transformation system. Such strategies have recently been employed in a variety of different species. In S. mutans, for example, genome editing combined with the power of promoter mapping and RNA-Seq allowed for the identification of a link between the ComCDE and the ComRS systems, a ComR positive feedback loop mediated by SigX, and the XrpA peptide, encoded within sigX, which inhibits competence. In S. pneumoniae, a novel member of the competence regulon termed BriC was found to be directly under control of ComE and to promote biofilm formation and nasopharyngeal colonization but not competence. Together these new technologies enable us to discover new links and to revisit old pathways in the compelling study of natural genetic transformation.

14.
Sci Rep ; 7(1): 5984, 2017 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-28729683

RESUMO

Natural transformation is used by bacteria to take up DNA from their surroundings and incorporate it into their genomes. Streptococci do so during a transient period of competence, triggered by pheromones that they produce, secrete and sense under conditions influenced by the environment. In Streptococcus mutans, Streptococcus suis, and species of the bovis, salivarius and pyogenic groups of streptococci, the pheromone XIP is sensed by the intra-cellular regulator ComR, that in turn activates the transcription of comS, encoding the XIP precursor, and of sigX, encoding the only known alternative sigma factor in streptococci. Although induction of comR during competence has been known for more than fifteen years, the mechanism regulating its expression remains unidentified. By a combination of directional RNA-sequencing, optimal competence conditions, stepwise deletions and marker-less genome editing, we found that SigX is the missing link in overproduction of ComR. In the absence of comR induction, both sigX expression and transformation were significantly reduced. Placing comR and comS transcripts under the control of different regulators so as to form two interlocked positive feedback circuits may enable S. mutans to fine-tune the kinetics and magnitude of the competence response according to their need.


Assuntos
Proteínas de Bactérias/genética , Retroalimentação Fisiológica , Regulação Bacteriana da Expressão Gênica , Fator sigma/metabolismo , Streptococcus mutans/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Códon de Terminação/genética , Competência de Transformação por DNA/genética , DNA Intergênico/genética , Edição de Genes , Perfilação da Expressão Gênica , Modelos Biológicos , Mutação/genética , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Deleção de Sequência , Streptococcus mutans/crescimento & desenvolvimento , Transcrição Gênica , Transcriptoma/genética , Regulação para Cima/genética
15.
Methods Mol Biol ; 1537: 219-232, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27924597

RESUMO

The discovery that Streptococcus pneumoniae uses a competence-stimulating peptide (CSP) to induce competence for natural transformation, and that other species of the mitis and the anginosus streptococcal groups use a similar system, has expanded the tools to explore gene function and regulatory pathways in streptococci. Two other classes of pheromones have been discovered since then, comprising the bacteriocin-inducing peptide class found in Streptococcus mutans (also named CSP, although different from the former) and the SigX-inducing peptides (XIP), in the mutans, salivarius, bovis, and pyogenes groups of streptococci. The three classes of peptide pheromones can be ordered from peptide synthesis services at affordable prices, and used in transformation assays to obtain competent cultures consistently at levels usually higher than those achieved during spontaneous competence. In this chapter, we present protocols for natural transformation of oral streptococci that are based on the use of synthetic pheromones, with examples of conditions optimized for transformation of S. mutans and Streptococcus mitis.


Assuntos
Boca/microbiologia , Feromônios/farmacologia , Streptococcus/efeitos dos fármacos , Streptococcus/fisiologia , Transformação Bacteriana/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/farmacologia , Humanos , Peptídeos/farmacologia , Feromônios/síntese química , Streptococcus mutans/efeitos dos fármacos , Streptococcus mutans/fisiologia
16.
Methods Mol Biol ; 1537: 233-247, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27924598

RESUMO

Selective markers employed in classical mutagenesis methods using natural genetic transformation can affect gene expression, risk phenotypic effects, and accumulate as unwanted genes during successive mutagenesis cycles. In this chapter, we present a protocol for markerless genome editing in Streptococcus mutans and Streptococcus pneumoniae achieved with an efficient method for natural transformation. High yields of transformants are obtained by combining the unimodal state of competence developed after treatment of S. mutans with sigX-inducing peptide pheromone (XIP) in a chemically defined medium (CDM) or of S. pneumoniae with the competence-stimulating peptide (CSP) together with use of a donor amplicon carrying extensive flanking homology. This combination ensures efficient and precise integration of a new allele by the recombination machinery present in competent cells.


Assuntos
Edição de Genes , Marcadores Genéticos , Genoma Bacteriano , Streptococcus/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/farmacologia , Genes Bacterianos , Mutação , Deleção de Sequência , Fator sigma/metabolismo , Fator sigma/farmacologia , Transformação Bacteriana/efeitos dos fármacos
17.
PLoS Pathog ; 12(12): e1005979, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27907154

RESUMO

Natural transformation, or competence, is an ability inherent to bacteria for the uptake of extracellular DNA. This process is central to bacterial evolution and allows for the rapid acquirement of new traits, such as antibiotic resistance in pathogenic microorganisms. For the Gram-positive bacteria genus Streptococcus, genes required for competence are under the regulation of quorum sensing (QS) mediated by peptide pheromones. One such system, ComRS, consists of a peptide (ComS) that is processed (XIP), secreted, and later imported into the cytoplasm, where it binds and activates the transcription factor ComR. ComR then engages in a positive feedback loop for the expression of ComS and the alternative sigma-factor SigX. Although ComRS are present in the majority of Streptococcus species, the sequence of both ComS/XIP and ComR diverge significantly, suggesting a mechanism for species-specific communication. To study possible cross-talk between streptococcal species in the regulation of competence, and to explore in detail the molecular interaction between ComR and XIP we undertook an interdisciplinary approach. We developed a 'test-bed' assay to measure the activity of different ComR proteins in response to cognate and heterologous XIP peptides in vivo, revealing distinct ComR classes of strict, intermediate, and promiscuous specificity among species. We then solved an X-ray crystal structure of ComR from S. suis to further understand the interaction with XIP and to search for structural features in ComR proteins that may explain XIP recognition. Using the structure as a guide, we probed the apo conformation of the XIP-binding pocket by site-directed mutagenesis, both in test-bed cultures and biochemically in vitro. In alignments with ComR proteins from other species, we find that the pocket is lined by a variable and a conserved face, where residues of the conserved face contribute to ligand binding and the variable face discriminate among XIP peptides. Together, our results not only provide a model for XIP recognition and specificity, but also allow for the prediction of novel XIP peptides that induce ComR activity.


Assuntos
Proteínas de Bactérias/metabolismo , Percepção de Quorum/fisiologia , Streptococcus/fisiologia , Calorimetria , Dicroísmo Circular , Competência de Transformação por DNA/fisiologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Feromônios
18.
Front Microbiol ; 7: 1009, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27458432

RESUMO

OBJECTIVE: Streptococcus mitis is a predominant oral colonizer, but difficulties in genetic manipulation of this species have hampered our understanding of the mechanisms it uses for colonization of oral surfaces. The aim of this study was to reveal optimal conditions for natural genetic transformation in S. mitis and illustrate its application in direct genome editing. METHODS: Luciferase reporter assays were used to assess gene expression of the alternative sigma factor (σ(X)) in combination with natural transformation experiments to evaluate the efficiency by which S. mitis activates the competence system and incorporates exogenous DNA. Optimal amounts and sources of donor DNA (chromosomal, amplicon, or replicative plasmid), concentrations of synthetic competence-stimulating peptide, and transformation media were assessed. RESULTS: A semi-defined medium showed much improved results for response to the competence stimulating peptide when compared to rich media. The use of a donor amplicon with large homology flanking regions also provided higher transformation rates. Overall, an increase of transformation efficiencies from 0.001% or less to over 30% was achieved with the developed protocol. We further describe the construction of a markerless mutant based on this high efficiency strategy. CONCLUSION: We optimized competence development in S. mitis, by use of semi-defined medium and appropriate concentrations of synthetic competence factor. Combined with the use of a large amplicon of donor DNA, this method allowed easy and direct editing of the S. mitis genome, broadening the spectrum of possible downstream applications of natural transformation in this species.

19.
J Bacteriol ; 198(17): 2370-8, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27353650

RESUMO

UNLABELLED: Streptococcus pneumoniae is able to integrate exogenous DNA into its genome by natural genetic transformation. Transient accumulation of high levels of the only S. pneumoniae alternative σ factor is insufficient for development of full competence without expression of a second competence-specific protein, ComW. The ΔcomW mutant is 10(4)-fold deficient in the yield of recombinants, 10-fold deficient in the amount of σ(X) activity, and 10-fold deficient in the amount of σ(X) protein. The critical role of ComW during transformation can be partially obviated by σ(A) mutations clustered on surfaces controlling affinity for core RNA polymerase (RNAP). While strains harboring σ(A) mutations in the comW mutant background were transforming at higher rates, the mechanism of transformation restoration was not clear. To investigate the mechanism of transformation restoration, we measured late gene expression in σ(A)* suppressor strains. Restoration of late gene expression was observed in ΔcomW σ(A)* mutants, indicating that a consequence of the σ(A)* mutations is, at least, to restore σ(X) activity. Competence kinetics were normal in ΔcomW σ(A)* strains, indicating that strains with restored competence exhibit the same pattern of transience as wild-type (WT) strains. We also identified a direct interaction between ComW and σ(X) using the yeast two-hybrid (Y2H) assay. Taken together, these data are consistent with the idea that ComW increases σ(X) access to core RNAP, pointing to a direct role of ComW in σ factor exchange during genetic transformation. However, the lack of late gene shutoff in ΔcomW mutants also points to a potential new role for ComW in competence shutoff. IMPORTANCE: The sole alternative sigma factor of the streptococci, SigX, regulates development of competence for genetic transformation, a widespread mechanism of adaptation by horizontal gene transfer in this genus. The transient appearance of this sigma factor is strictly controlled at the levels of transcription and stability. This report shows that it is also controlled at the point of its substitution for SigA by a second transient competence-specific protein, ComW.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Fator sigma/metabolismo , Streptococcus pneumoniae/genética , Transformação Genética , Proteínas de Bactérias/genética , Mutação , Fator sigma/genética
20.
Infect Immun ; 84(6): 1887-1901, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27068094

RESUMO

Natural genetic transformation of Streptococcus pneumoniae, an important human pathogen, mediates horizontal gene transfer for the development of drug resistance, modulation of carriage and virulence traits, and evasion of host immunity. Transformation frequency differs greatly among pneumococcal clinical isolates, but the molecular basis and biological importance of this interstrain variability remain unclear. In this study, we characterized the transformation frequency and other associated phenotypes of 208 S. pneumoniae clinical isolates representing at least 30 serotypes. While the vast majority of these isolates (94.7%) were transformable, the transformation frequency differed by up to 5 orders of magnitude between the least and most transformable isolates. The strain-to-strain differences in transformation frequency were observed among many isolates producing the same capsule types, indicating no general association between transformation frequency and serotype. However, a statistically significant association was observed between the levels of transformation and colonization fitness/virulence in the hypertransformable isolates. Although nontransformable mutants of all the selected hypertransformable isolates were significantly attenuated in colonization fitness and virulence in mouse infection models, such mutants of the strains with relatively low transformability had no or marginal fitness phenotypes under the same experimental settings. This finding strongly suggests that the pneumococci with high transformation capability are "addicted" to a "hypertransformable" state for optimal fitness in the human host. This work has thus provided an intriguing hint for further investigation into how the competence system impacts the fitness, virulence, and other transformation-associated traits of this important human pathogen.


Assuntos
Regulação Bacteriana da Expressão Gênica , Genes Bacterianos/imunologia , Evasão da Resposta Imune/genética , Pneumonia Pneumocócica/imunologia , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/patogenicidade , Transformação Bacteriana/imunologia , Animais , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Aptidão Genética , Heterogeneidade Genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Nasofaringe/imunologia , Nasofaringe/microbiologia , Fenótipo , Pneumonia Pneumocócica/microbiologia , Pneumonia Pneumocócica/patologia , Sorogrupo , Streptococcus pneumoniae/imunologia , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA