Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neurophotonics ; 9(3): 035001, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35874144

RESUMO

Significance: Hyperspectral near-infrared spectroscopy (hsNIRS) combined with diffuse correlation spectroscopy (DCS) provides a noninvasive approach for monitoring cerebral blood flow (CBF), the cerebral metabolic rate of oxygen ( CMRO 2 ) and the oxidation state of cytochrome-c-oxidase (oxCCO). CMRO 2 is calculated by combining tissue oxygen saturation ( S t O 2 ) with CBF, whereas oxCCO can be measured directly by hsNIRS. Although both reflect oxygen metabolism, a direct comparison has yet to be studied. Aim: We aim to investigate the relationship between CMRO 2 and oxCCO during periods of restricted oxygen delivery and lower metabolic demand. Approach: A hybrid hsNIRS/DCS system was used to measure hemodynamic and metabolic responses in piglets exposed to cerebral ischemia and anesthetic-induced reductions in brain activity. Results: Although a linear relationship was observed between CMRO 2 and oxCCO during ischemia, both exhibited a nonlinear relationship with respect to CBF. In contrast, linear correlation was sufficient to characterize the relationships between CMRO 2 and CBF and between the two metabolic markers during reduced metabolic demand. Conclusions: The observed relationship between CMRO 2 and oxCCO during periods of restricted oxygen delivery and lower metabolic demand indicates that the two metabolic markers are strongly correlated.

2.
Biomed Opt Express ; 9(6): 2588-2603, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30258675

RESUMO

Preterm infants born with very low birth weights are at a high risk of brain injury, in part because the premature brain is believed to be prone to periods of low cerebral blood flow (CBF). Tissue damage is likely to occur if reduction in CBF is sufficient to impair cerebral energy metabolism for extended periods. Therefore, a neuromonitoring method that can detect reductions in CBF, large enough to affect metabolism, could alert the neonatal intensive care team before injury occurs. In this report, we present the development of an optical system that combines diffuse correlation spectroscopy (DCS) for monitoring CBF and broadband near-infrared spectroscopy (B-NIRS) for monitoring the oxidation state of cytochrome c oxidase (oxCCO) - a key biomarker of oxidative metabolism. The hybrid instrument includes a multiplexing system to enable concomitant DCS and B-NIRS measurements while avoiding crosstalk between the two subsystems. The ability of the instrument to monitor dynamic changes in CBF and oxCCO was demonstrated in a piglet model of neonatal hypoxia-ischemia (HI). Experiments conducted in eight animals, including two controls, showed that oxCCO exhibited a delayed response to ischemia while CBF and tissue oxygenation (StO2) responses were instantaneous. These findings suggest that simultaneous neuromonitoring of perfusion and metabolism could provide critical information regarding clinically significant hemodynamic events prior to the onset of brain injury.

3.
Biomed Opt Express ; 7(10): 3843-3854, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27867697

RESUMO

Joint hypoxia plays a central role in the progression and perpetuation of rheumatoid arthritis (RA). Thus, optical techniques that can measure surrogate markers of hypoxia such as blood flow, oxyhemoglobin, deoxyhemoglobin, and oxygen saturation are being developed to monitor RA. The purpose of the current study was to compare the sensitivity of these physiological parameters to arthritis. Experiments were conducted in a rabbit model of RA and the results revealed that joint blood flow was the most sensitive to arthritis and could detect a statistically significant difference (p<0.05, power = 0.8) between inflamed and healthy joints with a sample size of only four subjects. Considering that this a quantitative technique, the high sensitivity to arthritis suggests that joint perfusion has the potential to become a potent tool for monitoring disease progression and treatment response in RA.

4.
Biomed Opt Express ; 7(9): 3659-3674, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27699127

RESUMO

Diffuse correlation spectroscopy (DCS) is a promising technique for brain monitoring as it can provide a continuous signal that is directly related to cerebral blood flow (CBF); however, signal contamination from extracerebral tissue can cause flow underestimations. The goal of this study was to investigate whether a multi-layered (ML) model that accounts for light propagation through the different tissue layers could successfully separate scalp and brain flow when applied to DCS data acquired at multiple source-detector distances. The method was first validated with phantom experiments. Next, experiments were conducted in a pig model of the adult head with a mean extracerebral tissue thickness of 9.8 ± 0.4 mm. Reductions in CBF were measured by ML DCS and computed tomography perfusion for validation; excellent agreement was observed by a mean difference of 1.2 ± 4.6% (CI95%: -31.1 and 28.6) between the two modalities, which was not significantly different.

5.
PLoS One ; 11(6): e0158157, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27347877

RESUMO

CT Perfusion (CTP) derived cerebral blood flow (CBF) thresholds have been proposed as the optimal parameter for distinguishing the infarct core prior to reperfusion. Previous threshold-derivation studies have been limited by uncertainties introduced by infarct expansion between the acute phase of stroke and follow-up imaging, or DWI lesion reversibility. In this study a model is proposed for determining infarction CBF thresholds at 3hr ischemia time by comparing contemporaneously acquired CTP derived CBF maps to 18F-FFMZ-PET imaging, with the objective of deriving a CBF threshold for infarction after 3 hours of ischemia. Endothelin-1 (ET-1) was injected into the brain of Duroc-Cross pigs (n = 11) through a burr hole in the skull. CTP images were acquired 10 and 30 minutes post ET-1 injection and then every 30 minutes for 150 minutes. 370 MBq of 18F-FFMZ was injected ~120 minutes post ET-1 injection and PET images were acquired for 25 minutes starting ~155-180 minutes post ET-1 injection. CBF maps from each CTP acquisition were co-registered and converted into a median CBF map. The median CBF map was co-registered to blood volume maps for vessel exclusion, an average CT image for grey/white matter segmentation, and 18F-FFMZ-PET images for infarct delineation. Logistic regression and ROC analysis were performed on infarcted and non-infarcted pixel CBF values for each animal that developed infarct. Six of the eleven animals developed infarction. The mean CBF value corresponding to the optimal operating point of the ROC curves for the 6 animals was 12.6 ± 2.8 mL·min-1·100g-1 for infarction after 3 hours of ischemia. The porcine ET-1 model of cerebral ischemia is easier to implement then other large animal models of stroke, and performs similarly as long as CBF is monitored using CTP to prevent reperfusion.


Assuntos
Isquemia Encefálica/diagnóstico por imagem , Isquemia Encefálica/patologia , Infarto Cerebral/diagnóstico por imagem , Infarto Cerebral/patologia , Circulação Cerebrovascular , Flumazenil/análogos & derivados , Tomografia por Emissão de Pósitrons , Tomografia Computadorizada por Raios X , Animais , Modelos Animais de Doenças , Feminino , Masculino , Curva ROC , Suínos , Fatores de Tempo
6.
Biomed Opt Express ; 6(11): 4288-301, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26600995

RESUMO

Diffuse correlation spectroscopy (DCS) is a non-invasive optical technique capable of monitoring tissue perfusion. The normalized temporal intensity autocorrelation function generated by DCS is typically characterized by assuming that the movement of erythrocytes can be modeled as a Brownian diffusion-like process instead of by the expected random flow model. Recently, a hybrid model, referred to as the hydrodynamic diffusion model, was proposed, which combines the random and Brownian flow models. The purpose of this study was to investigate the best model to describe autocorrelation functions acquired directly on the brain in order to avoid confounding effects of extracerebral tissues. Data were acquired from 11 pigs during normocapnia and hypocapnia, and flow changes were verified by computed tomography perfusion (CTP). The hydrodynamic diffusion model was found to provide the best fit to the autocorrelation functions; however, no significant difference for relative flow changes measured by the Brownian and hydrodynamic diffusion models was observed.

7.
Neurophotonics ; 2(3): 035006, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26835481

RESUMO

Hypothermia (HT) is a potent neuroprotective therapy that is now widely used in following neurological emergencies, such as neonatal asphyxia. An important mechanism of HT-induced neuroprotection is attributed to the associated reduction in the cerebral metabolic rate of oxygen ([Formula: see text]). Since cerebral circulation and metabolism are tightly regulated, reduction in [Formula: see text] typically results in decreased cerebral blood flow (CBF); it is only under oxidative stress, e.g., hypoxia-ischemia, that oxygen extraction fraction (OEF) deviates from its basal value, which can lead to cerebral dysfunction. As such, it is critical to measure these key physiological parameters during therapeutic HT. This report investigates a noninvasive method of measuring the coupling of [Formula: see text] and CBF under HT and different anesthetic combinations of propofol/nitrous-oxide ([Formula: see text]) that may be used in clinical practice. Both CBF and [Formula: see text] decreased with decreasing temperature, but the OEF remained unchanged, which indicates a tight coupling of flow and metabolism under different anesthetics and over the mild HT temperature range (38°C to 33°C).

8.
Neuroimage ; 94: 303-311, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24650601

RESUMO

Dynamic contrast-enhanced (DCE) near-infrared (NIR) methods have been proposed for bedside monitoring of cerebral blood flow (CBF). These methods have primarily focused on qualitative approaches since scalp contamination hinders quantification. In this study, we demonstrate that accurate CBF measurements can be obtained by analyzing multi-distance time-resolved DCE data with a combined kinetic deconvolution optical reconstruction (KDOR) method. Multi-distance time-resolved DCE-NIR measurements were made in adult pigs (n=8) during normocapnia, hypocapnia and ischemia. The KDOR method was used to calculate CBF from the DCE-NIR measurements. For validation, CBF was measured independently by CT under each condition. The mean CBF difference between the techniques was -1.7 mL/100 g/min with 95% confidence intervals of -16.3 and 12.9 mL/100 g/min; group regression analysis revealed a strong agreement between the two techniques (slope=1.06±0.08, y-intercept=-4.37±4.33 mL/100 g/min, p<0.001). The results of an error analysis suggest that little a priori information is needed to recover CBF, due to the robustness of the analytical method and the ability of time-resolved NIR to directly characterize the optical properties of the extracerebral tissue (where model mismatch is deleterious). The findings of this study suggest that the DCE-NIR approach presented is a minimally invasive and portable means of determining absolute hemodynamics in neurocritical care patients.


Assuntos
Algoritmos , Isquemia Encefálica/fisiopatologia , Encéfalo/fisiopatologia , Circulação Cerebrovascular , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Animais , Velocidade do Fluxo Sanguíneo , Isquemia Encefálica/diagnóstico , Meios de Contraste , Feminino , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Suínos
9.
Biomed Opt Express ; 4(2): 206-18, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23413183

RESUMO

Variance of time-of-flight distributions have been shown to be more sensitive to cerebral blood flow (CBF) during dynamic-contrast enhanced monitoring of neurotrauma patients than attenuation. What is unknown is the degree to which variance is affected by changes in extracerebral blood flow. Furthermore, the importance of acquiring the arterial input function (AIF) on quantitative analysis of the data is not yet clear. This animal study confirms that variance is both sensitive and specific to changes occurring in the brain when measurements are acquired on the surface of the scalp. Furthermore, when the variance data along with the measured AIF is analyzed using a nonparametric deconvolution method, the recovered change in CBF is in good agreement with CT perfusion values.

10.
Phys Med Biol ; 57(24): 8285-95, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23190567

RESUMO

In many cases, kinetic modeling requires that the arterial input function (AIF)--the time-dependent arterial concentration of a tracer--be characterized. A straightforward method to measure the AIF of red and near-infrared optical dyes (e.g., indocyanine green) using a pulse oximeter is presented. The method is motivated by the ubiquity of pulse oximeters used in both preclinical and clinical applications, as well as the gap in currently available technologies to measure AIFs in small animals. The method is based on quantifying the interference that is observed in the derived arterial oxygen saturation (SaO2) following a bolus injection of a light-absorbing dye. In other words, the change in SaO2 can be converted into dye concentration knowing the chromophore-specific extinction coefficients, the true arterial oxygen saturation, and total hemoglobin concentration. A simple error analysis was performed to highlight potential limitations of the approach, and a validation of the method was conducted in rabbits by comparing the pulse oximetry method with the AIF acquired using a pulse dye densitometer. Considering that determining the AIF is required for performing quantitative tracer kinetics, this method provides a flexible tool for measuring the arterial dye concentration that could be used in a variety of applications.


Assuntos
Artérias/metabolismo , Meios de Contraste , Imagem Óptica/métodos , Fenômenos Ópticos , Oximetria/métodos , Oxigênio/sangue , Absorção , Animais , Artérias/fisiologia , Corantes , Coelhos , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA