Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 14: 1109754, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37008014

RESUMO

Infants exposed to opioids in utero are an increasing clinical population and these infants are often diagnosed with Neonatal Abstinence Syndrome (NAS). Infants with NAS have diverse negative health consequences, including respiratory distress. However, many factors contribute to NAS, confounding the ability to understand how maternal opioids directly impact the neonatal respiratory system. Breathing is controlled centrally by respiratory networks in the brainstem and spinal cord, but the impact of maternal opioids on developing perinatal respiratory networks has not been studied. Using progressively more isolated respiratory network circuitry, we tested the hypothesis that maternal opioids directly impair neonatal central respiratory control networks. Fictive respiratory-related motor activity from isolated central respiratory networks was age-dependently impaired in neonates after maternal opioids within more complete respiratory networks (brainstem and spinal cords), but unaffected in more isolated networks (medullary slices containing the preBötzinger Complex). These deficits were due, in part, to lingering opioids within neonatal respiratory control networks immediately after birth and involved lasting impairments to respiratory pattern. Since opioids are routinely given to infants with NAS to curb withdrawal symptoms and our previous work demonstrated acute blunting of opioid-induced respiratory depression in neonatal breathing, we further tested the responses of isolated networks to exogenous opioids. Isolated respiratory control networks also demonstrated age-dependent blunted responses to exogenous opioids that correlated with changes in opioid receptor expression within a primary respiratory rhythm generating region, the preBötzinger Complex. Thus, maternal opioids age-dependently impair neonatal central respiratory control and responses to exogenous opioids, suggesting central respiratory impairments contribute to neonatal breathing destabilization after maternal opioids and likely contribute to respiratory distress in infants with NAS. These studies represent a significant advancement of our understanding of the complex effects of maternal opioids, even late in gestation, contributing to neonatal breathing deficits, necessary first steps in developing novel therapeutics to support breathing in infants with NAS.

2.
Front Physiol ; 12: 604593, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33716765

RESUMO

Pregnant women and developing infants are understudied populations in the opioid crisis, despite the rise in opioid use during pregnancy. Maternal opioid use results in diverse negative outcomes for the fetus/newborn, including death; however, the effects of perinatal (maternal and neonatal) opioids on developing respiratory circuitry are not well understood. Given the profound depressive effects of opioids on central respiratory networks controlling breathing, we tested the hypothesis that perinatal opioid exposure impairs respiratory neural circuitry, creating breathing instability. Our data demonstrate maternal opioids increase apneas and destabilize neonatal breathing. Maternal opioids also blunted opioid-induced respiratory frequency depression acutely in neonates; a unique finding since adult respiratory circuity does not desensitize to opioids. This desensitization normalized rapidly between postnatal days 1 and 2 (P1 and P2), the same age quantal slowing emerged in respiratory rhythm. These data suggest significant reorganization of respiratory rhythm generating circuits at P1-2, the same time as the preBötzinger Complex (key site of respiratory rhythm generation) becomes the dominant respiratory rhythm generator. Thus, these studies provide critical insight relevant to the normal developmental trajectory of respiratory circuits and suggest changes to mutual coupling between respiratory oscillators, while also highlighting how maternal opioids alter these developing circuits. In conclusion, the results presented demonstrate neurorespiratory disruption by maternal opioids and blunted opioid-induced respiratory frequency depression with neonatal opioids, which will be important for understanding and treating the increasing population of neonates exposed to gestational opioids.

3.
Respir Physiol Neurobiol ; 272: 103314, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31614211

RESUMO

Neonatal respiratory impairment during infection is common, yet its effects on respiratory neural circuitry are not fully understood. We hypothesized that the timing and severity of systemic inflammation is positively correlated with impairment in neonatal respiratory activity. To test this, we evaluated time- and dose-dependent impairment of in vitro fictive respiratory activity. Systemic inflammation (induced by lipopolysaccharide, LPS, 5 mg/kg, i.p.) impaired burst amplitude during the early (1 h) inflammatory response. The greatest impairment in respiratory activity (decreased amplitude, frequency, and increased rhythm disturbances) occurred during the peak (3 h) inflammatory response in brainstem-spinal cord preparations. Surprisingly, isolated medullary respiratory circuitry within rhythmic slices showed decreased baseline frequency and delayed onset of rhythm only after higher systemic inflammation (LPS 10 mg/kg) early in the inflammatory response (1 h), with no impairments at the peak inflammatory response (3 h). Thus, different components of neonatal respiratory circuitry have differential temporal and dose sensitivities to systemic inflammation, creating multiple windows of vulnerability for neonates after systemic inflammation.


Assuntos
Inflamação , Lipopolissacarídeos/farmacologia , Bulbo , Atividade Motora/fisiologia , Periodicidade , Respiração , Medula Espinal , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Feminino , Expressão Gênica/fisiologia , Inflamação/induzido quimicamente , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/fisiopatologia , Masculino , Bulbo/imunologia , Bulbo/metabolismo , Bulbo/fisiopatologia , Ratos Sprague-Dawley , Respiração/imunologia , Medula Espinal/imunologia , Medula Espinal/metabolismo , Medula Espinal/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA