Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Thromb Haemost ; 22(6): 1758-1771, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38462220

RESUMO

BACKGROUND: The widespread use of the antifibrinolytic agent, tranexamic acid (TXA), interferes with the quantification of fibrinolysis by dynamic laboratory assays such as clot lysis, making it difficult to measure fibrinolysis in many trauma patients. At the final stage of coagulation, factor (F)XIIIa catalyzes the formation of fibrin-fibrin and fibrin-α2-antiplasmin (α2AP) cross-links, which increases clot mechanical strength and resistance to fibrinolysis. OBJECTIVES: Here, we developed a method to quantify fibrin-fibrin and fibrin-α2AP cross-links that avoids the challenges posed by TXA in determining fibrinolytic resistance in conventional assays. METHODS: Fibrinogen alpha (FGA) chain (FGA-FGA), fibrinogen gamma (FGG) chain (FGG-FGG), and FGA-α2AP cross-links were quantified using liquid chromatography-mass spectrometry (LC-MS) and parallel reaction monitoring in paired plasma samples from trauma patients prefibrinogen and postfibrinogen replacement. Differences in the abundance of cross-links in trauma patients receiving cryoprecipitate (cryo) or fibrinogen concentrate (Fg-C) were analyzed. RESULTS: The abundance of cross-links was significantly increased in trauma patients postcryo, but not Fg-C transfusion (P < .0001). The abundance of cross-links was positively correlated with the toughness of individual fibrin fibers, the peak thrombin concentration, and FXIII antigen (P < .05). CONCLUSION: We have developed a novel method that allows us to quantify fibrin cross-links in trauma patients who have received TXA, providing an indirect measure of fibrinolytic resistance. Using this novel approach, we have avoided the effect of TXA and shown that cryo increases fibrin-fibrin and fibrin-α2AP cross-linking when compared with Fg-C, highlighting the importance of FXIII in clot formation and stability in trauma patients.


Assuntos
Antifibrinolíticos , Fibrina , Fibrinogênio , Fibrinólise , Ácido Tranexâmico , Ferimentos e Lesões , alfa 2-Antiplasmina , Humanos , Fibrina/metabolismo , Fibrina/química , alfa 2-Antiplasmina/análise , alfa 2-Antiplasmina/metabolismo , Fibrinogênio/análise , Fibrinogênio/metabolismo , Ferimentos e Lesões/sangue , Antifibrinolíticos/sangue , Trombose/sangue , Coagulação Sanguínea , Cromatografia Líquida , Masculino , Adulto , Feminino , Espectrometria de Massas/métodos , Pessoa de Meia-Idade
2.
Front Cardiovasc Med ; 10: 1225243, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37745127

RESUMO

The 2023 annual meeting of the British Society for Haemostasis and Thrombosis (BSHT) was held in Birmingham, United Kingdom. The theme of this year's meeting was novel therapeutics and emerging technology. Here, the exciting research presented at the meeting is discussed.

3.
Res Pract Thromb Haemost ; 7(5): 100200, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37601014

RESUMO

Background: Factor XIII (FXIII) is an important proenzyme in the hemostatic system. The plasma-derived enzyme activated FXIII cross-links fibrin fibers within thrombi to increase their mechanical strength and cross-links fibrin to fibrinolytic inhibitors, specifically α2-antiplasmin, to increase resistance to fibrinolysis. We have previously shown that cellular FXIII (factor XIII-A [FXIII-A]), which is abundant in the platelet cytoplasm, is externalized onto the activated membrane and cross-links extracellular substrates. The contribution of cellular FXIII-A to platelet activation and platelet function has not been extensively studied. Objectives: This study aims to identify the role of platelet FXIII-A in platelet function. Methods: We used normal healthy platelets with a cell permeable FXIII inhibitor and platelets from FXIII-deficient patients as a FXIII-free platelet model in a range of platelet function and clotting tests. Results: Our data demonstrate that platelet FXIII-A enhances fibrinogen binding to the platelet surface upon agonist stimulation and improves the binding of platelets to fibrinogen and aggregation under flow in a whole-blood thrombus formation assay. In the absence of FXIII-A, platelets show reduced sensitivity to agonist stimulation, including decreased P-selectin exposure and fibrinogen binding. We show that FXIII-A is involved in platelet spreading where a lack of FXIII-A reduces the ability of platelets to fully spread on fibrinogen and collagen. Our data demonstrate that platelet FXIII-A is important for clot retraction where clots formed in its absence retracted to a lesser extent. Conclusion: Overall, this study shows that platelet FXIII-A functions during thrombus formation by aiding platelet activation and thrombus retraction in addition to its antifibrinolytic roles.

4.
Semin Thromb Hemost ; 49(3): 305-313, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36522166

RESUMO

Plasminogen activator inhibitor 1 (PAI-1), a SERPIN inhibitor, is primarily known for its regulation of fibrinolysis. However, it is now known that this inhibitor functions and contributes to many (patho)physiological processes including inflammation, wound healing, cell adhesion, and tumor progression.This review discusses the past, present, and future roles of PAI-1, with a particular focus on the discovery of this inhibitor in the 1970s and subsequent characterization in health and disease. Throughout the past few decades diverse functions of this serpin have unraveled and it is now considered an important player in many disease processes. PAI-1 is expressed by numerous cell types, including megakaryocytes and platelets, adipocytes, endothelial cells, hepatocytes, and smooth muscle cells. In the circulation PAI-1 exists in two pools, within plasma itself and in platelet α-granules. Platelet PAI-1 is secreted following activation with retention of the inhibitor on the activated platelet membrane. Furthermore, these anucleate cells contain PAI-1 messenger ribonucleic acid to allow de novo synthesis.Outside of the traditional role of PAI-1 in fibrinolysis, this serpin has also been identified to play important roles in metabolic syndrome, obesity, diabetes, and most recently, acute respiratory distress syndrome, including coronavirus disease 2019 disease. This review highlights the complexity of PAI-1 and the requirement to ascertain a better understanding on how this complex serpin functions in (patho)physiological processes.


Assuntos
COVID-19 , Serpinas , Humanos , Plaquetas/metabolismo , COVID-19/metabolismo , Células Endoteliais/metabolismo , Fibrinólise , Inibidor 1 de Ativador de Plasminogênio/fisiologia , Serpinas/metabolismo
5.
Crit Care ; 26(1): 290, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-36163263

RESUMO

BACKGROUND: Fibrinogen is the first coagulation protein to reach critical levels during traumatic haemorrhage. This laboratory study compares paired plasma samples pre- and post-fibrinogen replacement from the Fibrinogen Early In Severe Trauma studY (FEISTY; NCT02745041). FEISTY is the first randomised controlled trial to compare the time to administration of cryoprecipitate (cryo) and fibrinogen concentrate (Fg-C; Riastap) in trauma patients. This study will determine differences in clot strength and fibrinolytic stability within individuals and between treatment arms. METHODS: Clot lysis, plasmin generation, atomic force microscopy and confocal microscopy were utilised to investigate clot strength and structure in FEISTY patient plasma. RESULTS: Fibrinogen concentration was significantly increased post-transfusion in both groups. The rate of plasmin generation was reduced 1.5-fold post-transfusion of cryo but remained unchanged with Fg-C transfusion. Plasminogen activator inhibitor 1 activity and antigen levels and Factor XIII antigen were increased post-treatment with cryo, but not Fg-C. Confocal microscopy analysis of fibrin clots revealed that cryo transfusion restored fibrin structure similar to those observed in control clots. In contrast, clots remained porous with stunted fibres after infusion with Fg-C. Cryo but not Fg-C treatment increased individual fibre toughness and stiffness. CONCLUSIONS: In summary, our data indicate that cryo transfusion restores key fibrinolytic regulators and limits plasmin generation to form stronger clots in an ex vivo laboratory study. This is the first study to investigate differences in clot stability and structure between cryo and Fg-C and demonstrates that the additional factors in cryo allow formation of a stronger and more stable clot.


Assuntos
Transtornos da Coagulação Sanguínea , Hemostáticos , Trombose , Fator XIII/farmacologia , Fibrina/química , Fibrina/farmacologia , Fibrinogênio/uso terapêutico , Fibrinolisina/farmacologia , Fibrinólise , Hemostáticos/farmacologia , Humanos , Inibidor 1 de Ativador de Plasminogênio , Trombose/terapia
6.
J Thromb Haemost ; 20(10): 2394-2406, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35780481

RESUMO

BACKGROUND: Severe COVID-19 disease is associated with thrombotic complications and extensive fibrin deposition. This study investigates whether the hemostatic complications in COVID-19 disease arise due to dysregulation of the fibrinolytic system. METHODS: This prospective study analyzed fibrinolytic profiles of 113 patients hospitalized with COVID-19 disease with 24 patients with non-COVID-19 respiratory infection and healthy controls. Antigens were quantified by Ella system or ELISA, clot lysis by turbidimetric assay, and plasminogen activator inhibitor-1 (PAI-1)/plasmin activity using chromogenic substrates. Clot structure was visualized by confocal microscopy. RESULTS: PAI-1 and its cofactor, vitronectin, are significantly elevated in patients with COVID-19 disease compared with those with non-COVID-19 respiratory infection and healthy control groups. Thrombin activatable fibrinolysis inhibitor and tissue plasminogen activator were elevated in patients with COVID-19 disease relative to healthy controls. PAI-1 and tissue plasminogen activator (tPA) were associated with more severe COVID-19 disease severity. Clots formed from COVID-19 plasma demonstrate an altered fibrin network, with attenuated fiber length and increased branching. Functional studies reveal that plasmin generation and clot lysis were markedly attenuated in COVID-19 disease, while PAI-1 activity was elevated. Clot lysis time significantly correlated with PAI-1 levels. Stratification of COVID-19 samples according to PAI-1 levels reveals significantly faster lysis when using the PAI-1 resistant (tPA) variant, tenecteplase, over alteplase lysis. CONCLUSION: This study shows that the suboptimal fibrinolytic response in COVID-19 disease is directly attributable to elevated levels of PAI-1, which attenuate plasmin generation. These data highlight the important prognostic potential of PAI-1 and the possibility of using pre-existing drugs, such as tenecteplase, to treat COVID-19 disease and potentially other respiratory diseases.


Assuntos
Tratamento Farmacológico da COVID-19 , Carboxipeptidase B2 , Hemostáticos , Trombose , Compostos Cromogênicos , Fibrina , Fibrinolisina/farmacologia , Fibrinólise , Hemostáticos/farmacologia , Humanos , Inibidor 1 de Ativador de Plasminogênio , Estudos Prospectivos , Tenecteplase , Trombose/tratamento farmacológico , Ativador de Plasminogênio Tecidual/farmacologia , Vitronectina
8.
Front Cardiovasc Med ; 8: 653655, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33937363

RESUMO

Plasminogen activator inhibitor 1 (PAI-1) is a member of the serine protease inhibitor (serpin) superfamily. PAI-1 is the principal inhibitor of the plasminogen activators, tissue plasminogen activator (tPA), and urokinase-type plasminogen activator (uPA). Turbulence in the levels of PAI-1 tilts the balance of the hemostatic system resulting in bleeding or thrombotic complications. Not surprisingly, there is strong evidence that documents the role of PAI-1 in cardiovascular disease. The more recent uncovering of the coalition between the hemostatic and inflammatory pathways has exposed a distinct role for PAI-1. The storm of proinflammatory cytokines liberated during inflammation, including IL-6 and TNF-α, directly influence PAI-1 synthesis and increase circulating levels of this serpin. Consequently, elevated levels of PAI-1 are commonplace during infection and are frequently associated with a hypofibrinolytic state and thrombotic complications. Elevated PAI-1 levels are also a feature of metabolic syndrome, which is defined by a cluster of abnormalities including obesity, type 2 diabetes, hypertension, and elevated triglyceride. Metabolic syndrome is in itself defined as a proinflammatory state associated with elevated levels of cytokines. In addition, insulin has a direct impact on PAI-1 synthesis bridging these pathways. This review describes the key physiological functions of PAI-1 and how these become perturbed during disease processes. We focus on the direct relationship between PAI-1 and inflammation and the repercussion in terms of an ensuing hypofibrinolytic state and thromboembolic complications. Collectively, these observations strengthen the utility of PAI-1 as a viable drug target for the treatment of various diseases.

9.
Int J Mol Sci ; 22(4)2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33671748

RESUMO

Fibrinogen is the first coagulation protein to reach critically low levels during traumatic haemorrhage. There have been no differential effects on clinical outcomes between the two main sources of fibrinogen replacement: cryoprecipitate and fibrinogen concentrate (Fg-C). However, the constituents of these sources are very different. The aim of this study was to determine whether these give rise to any differences in clot stability that may occur during trauma haemorrhage. Fibrinogen deficient plasma (FDP) was spiked with fibrinogen from cryoprecipitate or Fg-C. A panel of coagulation factors, rotational thromboelastography (ROTEM), thrombin generation (TG), clot lysis and confocal microscopy were performed to measure clot strength and stability. Increasing concentrations of fibrinogen from Fg-C or cryoprecipitate added to FDP strongly correlated with Clauss fibrinogen, demonstrating good recovery of fibrinogen (r2 = 0.99). A marked increase in Factor VIII, XIII and α2-antiplasmin was observed in cryoprecipitate (p < 0.05). Increasing concentrations of fibrinogen from both sources were strongly correlated with ROTEM parameters (r2 = 0.78-0.98). Cryoprecipitate therapy improved TG potential, increased fibrinolytic resistance and formed more homogeneous fibrin clots, compared to Fg-C. In summary, our data indicate that cryoprecipitate may be a superior source of fibrinogen to successfully control bleeding in trauma coagulopathy. However, these different products require evaluation in a clinical setting.


Assuntos
Transtornos da Coagulação Sanguínea/terapia , Coagulantes/uso terapêutico , Fibrinogênio/uso terapêutico , Hemorragia/complicações , Transtornos da Coagulação Sanguínea/etiologia , Coagulantes/administração & dosagem , Relação Dose-Resposta a Droga , Fator VIII/uso terapêutico , Fibrinogênio/administração & dosagem , Fibrinólise , Hemorragia/terapia , Humanos , Microscopia Confocal , Tromboelastografia , Trombina/metabolismo , Trombose/induzido quimicamente
10.
Thromb Res ; 197: 100-108, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33190022

RESUMO

INTRODUCTION: A novel variant in the thrombomodulin (TM) gene, c.1487delC,p.(Pro496Argfs*10), referred to as Pro496Argfs*10, was identified in a family with an unexplained bleeding disorder. The Pro496Argfs*10 variant results in loss of the transmembrane and intracellular segments of TM and is associated with an increase in soluble TM (sTM) in the plasma. The aim of this study was to characterise the effect of elevated sTM on thrombin generation (TG) and fibrinolysis, and to evaluate therapeutic strategies to manage the patients. METHODS: Plasma samples were obtained from two patients carrying the variant. TG was triggered using 5 pM tissue factor and measured using the Calibrated Automated Thrombogram. A turbidity clot lysis assay was used to monitor fibrinolysis. TM antigen was quantified by ELISA. RESULTS: Patients with the Pro496Argfs*10 variant had significantly elevated plasma sTM compared to controls (372.6 vs. 6.0 ng/ml). TG potential was significantly lower in patients but was restored by inhibition of activated protein C (APC) or addition of activated Factor VII (FVIIa) or platelet concentrates. In vitro experiments suggested that activated prothrombin complex concentrates (APCC) posed a risk of thrombosis. The time to 50% lysis was significantly prolonged in patients compared to controls, 69.7 vs. 42.3 min. Clot lysis time was shortened by inhibition of activated thrombin activatable fibrinolysis inhibitor (TAFIa). CONCLUSIONS: Our data demonstrate that increased sTM enhances APC generation and reduces TG. Simultaneously, the rate of fibrinolysis is delayed due to increased TAFI activation by sTM. Treatment with platelet or FVIIa concentrates may be beneficial to manage this rare bleeding disorder.


Assuntos
Carboxipeptidase B2 , Trombomodulina , Fibrinólise , Humanos , Fenótipo , Trombina , Trombomodulina/genética
11.
Blood ; 137(2): 248-257, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-32842150

RESUMO

Plasminogen activation rates are enhanced by cell surface binding. We previously demonstrated that exogenous plasminogen binds to phosphatidylserine-exposing and spread platelets. Platelets contain plasminogen in their α-granules, but secretion of plasminogen from platelets has not been studied. Recently, a novel transmembrane lysine-dependent plasminogen receptor, Plg-RKT, has been described on macrophages. Here, we analyzed the pool of plasminogen in platelets and examined whether platelets express Plg-RKT. Plasminogen content of the supernatant of resting and collagen/thrombin-stimulated platelets was similar. Pretreatment with the lysine analog, ε-aminocaproic acid, significantly increased platelet-derived plasminogen (0.33 vs 0.08 nmol/108 platelets) in the stimulated supernatant, indicating a lysine-dependent mechanism of membrane retention. Lysine-dependent, platelet-derived plasminogen retention on thrombin and convulxin activated human platelets was confirmed by flow cytometry. Platelets initiated fibrinolytic activity in fluorescently labeled plasminogen-deficient clots and in turbidimetric clot lysis assays. A 17-kDa band, consistent with Plg-RKT, was detected in the platelet membrane fraction by western blotting. Confocal microscopy of stimulated platelets revealed Plg-RKT colocalized with platelet-derived plasminogen on the activated platelet membrane. Plasminogen exposure was significantly attenuated in thrombin- and convulxin-stimulated platelets from Plg-RKT-/- mice compared with Plg-RKT+/+ littermates. Membrane exposure of Plg-RKT was not dependent on plasminogen, as similar levels of the receptor were detected in plasminogen-/- platelets. These data highlight Plg-RKT as a novel plasminogen receptor in human and murine platelets. We show for the first time that platelet-derived plasminogen is retained on the activated platelet membrane and drives local fibrinolysis by enhancing cell surface-mediated plasminogen activation.


Assuntos
Plaquetas/metabolismo , Plasminogênio/metabolismo , Ativação Plaquetária/fisiologia , Receptores de Superfície Celular/metabolismo , Animais , Humanos , Camundongos
12.
Haematologica ; 105(12): 2824-2833, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33256381

RESUMO

Platelets harbor the primary reservoir of circulating plasminogen activator inhibitor 1 (PAI-1), but the reportedly low functional activity of this pool of inhibitor has led to debate over its contribution to thrombus stability. Here we analyze the fate of PAI-1 secreted from activated platelets and examine its role in maintaining thrombus integrity. Activation of platelets results in translocation of PAI-1 to the outer leaflet of the membrane, with maximal exposure in response to strong dual agonist stimulation. PAI-1 is found to co-localize in the cap of PS-exposing platelets with its cofactor, vitronectin, and fibrinogen. Inclusion of tirofiban or Gly-Pro-Arg-Pro significantly attenuated exposure of PAI-1, indicating a crucial role for integrin αIIbß3 and fibrin in delivery of PAI-1 to the activated membrane. Separation of platelets post-stimulation into soluble and cellular components revealed the presence of PAI-1 antigen and activity in both fractions, with approximately 40% of total platelet-derived PAI-1 remaining associated with the cellular fraction. Using a variety of fibrinolytic models we found that platelets produce a strong stabilizing effect against tPA-mediated clot lysis. Platelet lysate, as well as soluble and cellular fractions stabilize thrombi against premature degradation in a PAI-1 dependent manner. Our data show for the first time that a functional pool of PAI-1 is anchored to the membrane of stimulated platelets and regulates local fibrinolysis. We reveal a key role for integrin αIIbß3 and fibrin in delivery of PAI-1 from platelet α-granules to the activated membrane. These data suggest that targeting platelet-associated PAI-1 may represent a viable target for novel profibrinolytic agents.


Assuntos
Plaquetas , Inibidor 1 de Ativador de Plasminogênio , Fibrinólise , Humanos , Ativação Plaquetária , Ativador de Plasminogênio Tecidual
13.
J Thromb Haemost ; 18(7): 1548-1555, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32329246

RESUMO

The global pandemic of coronavirus disease 2019 (COVID-19) is associated with the development of acute respiratory distress syndrome (ARDS), which requires ventilation in critically ill patients. The pathophysiology of ARDS results from acute inflammation within the alveolar space and prevention of normal gas exchange. The increase in proinflammatory cytokines within the lung leads to recruitment of leukocytes, further propagating the local inflammatory response. A consistent finding in ARDS is the deposition of fibrin in the air spaces and lung parenchyma. COVID-19 patients show elevated D-dimers and fibrinogen. Fibrin deposits are found in the lungs of patients due to the dysregulation of the coagulation and fibrinolytic systems. Tissue factor (TF) is exposed on damaged alveolar endothelial cells and on the surface of leukocytes promoting fibrin deposition, while significantly elevated levels of plasminogen activator inhibitor 1 (PAI-1) from lung epithelium and endothelial cells create a hypofibrinolytic state. Prophylaxis treatment of COVID-19 patients with low molecular weight heparin (LMWH) is important to limit coagulopathy. However, to degrade pre-existing fibrin in the lung it is essential to promote local fibrinolysis. In this review, we discuss the repurposing of fibrinolytic drugs, namely tissue-type plasminogen activator (tPA), to treat COVID-19 associated ARDS. tPA is an approved intravenous thrombolytic treatment, and the nebulizer form has been shown to be effective in plastic bronchitis and is currently in Phase II clinical trial. Nebulizer plasminogen activators may provide a targeted approach in COVID-19 patients to degrade fibrin and improving oxygenation in critically ill patients.


Assuntos
Betacoronavirus/patogenicidade , Infecções por Coronavirus/tratamento farmacológico , Fibrinólise/efeitos dos fármacos , Fibrinolíticos/administração & dosagem , Pneumonia Viral/tratamento farmacológico , Terapia Trombolítica , Ativador de Plasminogênio Tecidual/administração & dosagem , COVID-19 , Infecções por Coronavirus/sangue , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/virologia , Reposicionamento de Medicamentos , Fibrinolíticos/efeitos adversos , Interações Hospedeiro-Patógeno , Humanos , Pandemias , Pneumonia Viral/sangue , Pneumonia Viral/diagnóstico , Pneumonia Viral/virologia , SARS-CoV-2 , Terapia Trombolítica/efeitos adversos , Ativador de Plasminogênio Tecidual/efeitos adversos , Resultado do Tratamento , Tratamento Farmacológico da COVID-19
14.
J Thromb Haemost ; 18(7): 1576-1585, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32196929

RESUMO

The liver synthesizes the majority of pro- and anti-coagulant and fibrinolytic proteins, and during liver dysfunction synthesis of these proteins is reduced. The end point of conventional hemostatic tests, such as the prothrombin time (PT), occurs when only 5% of thrombin generation (TG) has taken place and is not sensitive to the effects of natural anti-coagulants. The aim of this study was to determine whether TG in the presence of thrombomodulin (TM) provides more useful information about coagulation potential, in comparison to the PT. Analysis was performed on ST Genesia, a novel TG analyzer from Diagnostica Stago. TG was measured using STG-Thromboscreen, a reagent containing an intermediate concentration of human tissue factor (TF) ± rabbit TM to account for anti-coagulant protein C (PC) activity. Platelet-poor plasma (PPP) samples were from the Intensive Care Study of Coagulopathy-2 (ISOC-2), which recruited patients admitted to critical care with a prolonged PT (3 seconds above the reference range). Despite a prolonged PT, 48.0% and 60.7% of patients in the liver and non-liver groups had TG parameters within the normal range. Addition of TM reduced TG by 34.5% and 41.8% in the liver and non-liver groups, respectively. Interestingly, fresh frozen plasma (FFP) transfusion had no impact on TG. Measurement of TG with addition of TM provides a more informative assessment of coagulation capacity and indicates that hemostasis is balanced in patients with liver disease during critical illness, despite conventional tests suggesting that bleeding risk is increased.


Assuntos
Hepatopatias , Trombina , Animais , Testes de Coagulação Sanguínea , Estado Terminal , Humanos , Hepatopatias/diagnóstico , Tempo de Protrombina , Coelhos
15.
Purinergic Signal ; 10(4): 581-5, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25015314

RESUMO

Biased agonism describes a multistate model of G protein-coupled receptor activation in which each ligand induces a unique structural conformation of the receptor, such that the receptor couples differentially to G proteins and other intracellular proteins. P2Y receptors are G protein-coupled receptors that are activated by endogenous nucleotides, such as adenosine 5'-triphosphate (ATP) and uridine 5'-triphosphate (UTP). A previous report suggested that UTP may be a biased agonist at the human P2Y11 receptor, as it increased cytosolic [Ca2+], but did not induce accumulation of inositol phosphates, whereas ATP did both. The mechanism of action of UTP was unclear, so the aim of this study was to characterise the interaction of UTP with the P2Y11 receptor in greater detail. Intracellular Ca2+ was monitored in 1321N1 cells stably expressing human P2Y11 receptors using the Ca2+-sensitive fluorescent indicator, fluo-4. ATP evoked a rapid, concentration-dependent rise in intracellular Ca2+, but surprisingly, even high concentrations of UTP were ineffective. In contrast, UTP was slightly, but significantly more potent than ATP in evoking a rise in intracellular Ca2+ in 1321N1 cells stably expressing the human P2Y2 receptor, with no difference in the maximum response. Thus, the lack of response to UTP at hP2Y11 receptors was not due to a problem with the UTP solution. Furthermore, coapplying a high concentration of UTP with ATP did not inhibit the response to ATP. Thus, contrary to a previous report, we find no evidence for an agonist action of UTP at the human P2Y11 receptor, nor does UTP act as an antagonist.


Assuntos
Receptores Purinérgicos P2/metabolismo , Transdução de Sinais/fisiologia , Uridina Trifosfato/metabolismo , Astrocitoma/metabolismo , Cálcio/metabolismo , Linhagem Celular Tumoral , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA