RESUMO
BACKGROUND: Histones posttranslational modification represent an epigenetic mechanism that regulate gene expression and other cellular processes. Quantitative mass spectrometry used for the absolute quantification of such modifications provides further insight into cellular responses to extracellular insults such as infections or toxins. Methamphetamine (Meth), a drug of abuse, is affecting the overall function of the immune system. In this report, we developed, validated and applied a targeted, MS-based quantification assay to measure changes in histone H3 lysine 14 acetylation (H3K14Ac) during exposure of human primary macrophages to HIV-1 infection and/or Meth. METHODS: The quantification assay was developed and validated to determine H3K14Ac stoichiometry in histones that were isolated from the nuclei of control (CIC) and exposed to Meth before (CIM) or/and after (MIM) HIV-infection human monocyte-derived macrophages (hMDM) of six donors. It was based on LC-MS/MS measurement using multiple reaction monitoring (MRM) acquisition of the unmodified and acetylated form of lysine K14 of histone H3 9KSTGGKAPR17 peptides and the corresponding stable isotope labeled (SIL) heavy peptide standards of the same sequences. The histone samples were propionylated (Poy) pre- and post- trypsin digestion so that the sequences of the monitored peptides were: K[Poy]STGGK[1Ac]APR, K[Poy]STGGK[1Ac]APR-heavy, K[Poy]STGGK[Poy]APR and K[Poy]STGGK[Poy]APR-heavy. The absolute amounts of the acetylated and unmodified peptides were determined by comparing to the abundances of their SIL standards, that were added to the samples in the known concentrations, and, then used for calculation of H3K14Ac stoichiometry in CIC, CIM and MIM hMDM. RESULTS: The assay was characterized by LLOD of 0.106 fmol/µL and 0.204 fmol/µL for unmodified and acetylated H3 9KSTGGKAPR17 peptides, respectively. The LLOQ was 0.5 fmol/µL and the linear range of the assay was from 0.5 to 2500 fmol/µL. The absolute abundances of the quantified peptides varied between the donors and conditions, and so did the H3K14Ac stoichiometry. This was rather attributed to the samples nature itself, as the variability of their triplicate measurements was low. CONCLUSIONS: The developed LC-MS/MS assay enabled absolute quantification of H3K14Ac in exposed to Meth HIV-infected hMDM. It can be further applied determination of this PTM stoichiometry in other studies on human primary macrophages.
RESUMO
BACKGROUND: Despite effective antiretroviral therapy, cognitive impairment and other aging-related comorbidities are more prevalent in people with HIV (PWH) than in the general population. Previous research examining DNA methylation has shown PWH exhibit accelerated biological aging. However, it is unclear how accelerated biological aging may affect neural oscillatory activity in virally suppressed PWH, and more broadly how such aberrant neural activity may impact neuropsychological performance. METHODS: In the present study, participants (n = 134) between the ages of 23 - 72 years underwent a neuropsychological assessment, a blood draw to determine biological age via DNA methylation, and a visuospatial processing task during magnetoencephalography (MEG). Our analyses focused on the relationship between biological age and oscillatory theta (4-8 Hz) and alpha (10 - 16 Hz) activity among PWH (n=65) and seronegative controls (n = 69). RESULTS: PWH had significantly elevated biological age when controlling for chronological age relative to controls. Biological age was differentially associated with theta oscillations in the left posterior cingulate cortex (PCC) and with alpha oscillations in the right medial prefrontal cortex (mPFC) among PWH and seronegative controls. Stronger alpha oscillations in the mPFC were associated with lower CD4 nadir and lower current CD4 counts, suggesting such responses were compensatory. Participants who were on combination antiretroviral therapy for longer had weaker theta oscillations in the PCC. CONCLUSIONS: These findings support the concept of interactions between biological aging and HIV status on the neural oscillatory dynamics serving visuospatial processing. Future work should elucidate the long-term trajectory and impact of accelerated aging on neural oscillatory dynamics in PWH.
Assuntos
Infecções por HIV , Imageamento por Ressonância Magnética , Humanos , Idoso , Magnetoencefalografia , Envelhecimento/fisiologia , Infecções por HIV/tratamento farmacológico , Epigênese GenéticaRESUMO
The twin pandemics of opioid abuse and HIV infection can have devastating effects on physiological systems, including on the brain. Our previous work found that morphine increased the viral reservoir in the brains of treated SIV-infected macaques. In this study, we investigated the interaction of morphine and SIV to identify novel host-specific targets using a multimodal approach. We probed systemic parameters and performed single-cell examination of the targets for infection in the brain, microglia and macrophages. Morphine treatment created an immunosuppressive environment, blunting initial responses to infection, which persisted during antiretroviral treatment. Antiretroviral drug concentrations and penetration into the cerebrospinal fluid and brain were unchanged by morphine treatment. Interestingly, the transcriptional signature of both microglia and brain macrophages was transformed to one of a neurodegenerative phenotype. Notably, the expression of osteopontin, a pleiotropic cytokine, was significantly elevated in microglia. This was especially notable in the white matter, which is also dually affected by HIV and opioids. Increased osteopontin expression was linked to numerous HIV neuropathogenic mechanisms, including those that can maintain a viral reservoir. The opioid morphine is detrimental to SIV/HIV infection, especially in the brain.
Assuntos
Infecções por HIV , Morfina , Animais , Morfina/farmacologia , Osteopontina/genética , Encéfalo , Analgésicos Opioides , Antirretrovirais , Macaca , Expressão GênicaRESUMO
Microglia and macrophages are essential for homeostatic maintenance and innate immune response in the brain. They are the first line of defense against infections such as HIV/SIV in the brain. However, they are susceptible to infection and function as viral reservoirs even under effective viral suppression. While current antiretroviral regimens successfully suppress viremia and improve quality of life and lifespan, neurologic complications persist and are in part attributed to activated microglia. We sought to test the hypothesis that brain microglia return to a more homeostatic-like state when viremia is suppressed by combination antiretroviral therapy. Using the SIV-rhesus macaque model, we combined single-cell RNA sequencing, bioinformatics, and pathway analysis to compare gene expression profiles of brain myeloid cells under 4 conditions: uninfected, SIV infected, SIV infected with cART suppression, and SIV encephalitis (SIVE). Our study reveals greater myeloid diversity and an elevated proinflammatory state are associated with untreated SIV infection compared with uninfected animals. The development of encephalitis and suppression of viremia both reduced myeloid diversity. However, they had converse effects on the activation state of microglia and inflammation. Notably, suggestive of a restoration of a homeostatic state in microglia, gene expression and activation of pathways related to inflammation and immune response in cART-suppressed monkeys were most similar to that in uninfected monkeys. Untreated SIV infection shared characteristics, especially in brain macrophages to SIVE, with SIVE showing dramatic inflammation. In support of our hypothesis, our study demonstrates that cART indeed restores this key component of the brain's homeostatic state. Summary: ScRNA-seq of rhesus monkey microglia reveals clusters of cells in activated states in the setting of SIV infection, which is primarily reversed by suppressing viremia with combination antiretroviral therapy.
Assuntos
Encefalite , Infecções por HIV , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Macaca mulatta , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Microglia , Viremia/tratamento farmacológico , Qualidade de Vida , Encefalite/complicações , Carga ViralRESUMO
Macrophages are key elements of the innate immune system. Their HIV-1 infection is a complex process that involves multiple interacting factors and various steps and is further altered by exposure of infected cells to methamphetamine (Meth), a common drug of abuse in people living with HIV. This is reflected by dynamic changes in the intracellular and secreted proteomes of these cells. Quantification of these changes poses a challenge for experimental design and associated analytics. In this study, we measured the effect of Meth on expression of intracellular and secreted galectins-1, -3, and -9 in HIV-1 infected human monocyte-derived macrophages (hMDM) using SWATH-MS, which was further followed by MRM targeted mass spectrometry validation. Cells were exposed to Meth either prior to or after infection. Our results are the first to perform comprehensive quantifications of galectins in primary hMDM cells during HIV-1 infection and Meth exposure a building foundation for future studies on the molecular mechanisms underlying cellular pathology of hMDM resulting from viral infection and a drug of abuse-Meth.
Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Metanfetamina , Humanos , Macrófagos , Metanfetamina/metabolismo , Metanfetamina/farmacologiaRESUMO
Early-onset heart failure (HF) continues to be a major cause of morbidity and mortality in people living with human immunodeficiency virus type one (HIV-1) infection (PLWH), yet the molecular causes for this remain poorly understood. Herein NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ humanized mice (Hu-mice), plasma from PLWH, and autopsied cardiac tissues from deceased HIV seropositive individuals were used to assess if there is a link between the glycolysis byproduct methylglyoxal (MG) and HF in the setting of HIV-1 infection. At five weeks post HIV infection, Hu-mice developed grade III-IV diastolic dysfunction (DD) with an associated two-fold increase in plasma MG. At sixteen-seventeen weeks post infection, cardiac ejection fraction and fractional shortening also declined by 26 and 35%, and plasma MG increased to four-fold higher than uninfected controls. Histopathological and biochemical analyses of cardiac tissues from Hu-mice 17 weeks post-infection affirmed MG increase with a concomitant decrease in expression of the MG-degrading enzyme glyoxalase-1 (Glo1). The endothelial cell marker CD31 was found to be lower, and coronary microvascular leakage and myocardial fibrosis were prominent. Increasing expression of Glo1 in Hu-mice five weeks post-infection using a single dose of an engineered AAV2/9 (1.7 × 1012 virion particles/kg), attenuated the increases in plasma and cardiac MG levels. Increasing Glo1 also blunted microvascular leakage, fibrosis, and HF seen at sixteen weeks post-infection, without changes in plasma viral loads. In plasma from virally suppressed PLWH, MG was also 3.7-fold higher. In autopsied cardiac tissues from seropositive, HIV individuals with low viral log, MG was 4.2-fold higher and Glo1 was 50% lower compared to uninfected controls. These data show for the first time a causal link between accumulation of MG and HF in the setting of HIV infection.
RESUMO
It is well recognized that not all individuals age equivalently, with functional dependence attributable, at least in part, to stress accumulated across the lifespan. Amongst these dependencies are age-related declines in cognitive function, which may be the result of impaired inhibitory processing (e.g., sensory gating). Herein, we examined the unique roles of life and biological stress on somatosensory gating dynamics in 74 adults (22-72 years old). Participants completed a sensory gating paired-pulse electrical stimulation paradigm of the right median nerve during magnetoencephalography (MEG) and data were subjected to advanced oscillatory and time-domain analysis methods. We observed separable mechanisms by which increasing levels of life and biological stress predicted higher oscillatory gating ratios, indicative of age-related impairments in inhibitory function. Specifically, elevations in life stress significantly modulated the neural response to the first stimulation in the pair, while elevations in biological stress significantly modulated the neural response to the second stimulation in the pair. In contrast, neither elevations in life nor biological stress significantly predicted the gating of time-domain neural activity in the somatosensory cortex. Finally, our study is the first to link stress-induced decline in sensory gating to cognitive dysfunction, suggesting that gating paradigms may hold promise for detecting discrepant functional trajectories in age-related pathologies in the future.
Assuntos
Envelhecimento Saudável/fisiologia , Envelhecimento Saudável/psicologia , Filtro Sensorial , Estresse Fisiológico , Adulto , Idoso , Cognição , Estimulação Elétrica , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto JovemRESUMO
Toll-like receptors (TLRs) can contribute to central nervous system disease pathologies via recognition of microRNAs (miRNAs); however, it remains to be determined which miRNAs are able to activate this signaling. Here we report that numerous miRNAs induced the production of tumor necrosis factor alpha in multiple myeloid cell types, including microglia, and that this effect was abolished in cells deficient in TLR7. Examination of closely related miRNAs that differed in their ability to activate TLR7 resulted in the identification of a motif (UGCUUAU) in miR-20a-5p and specific nucleotides (all the uridines and surprisingly the cytosine as well) in a key area of miR-20a-5p and miR-148b-3p that were vital for the secretion of cytokines via TLR7 stimulation. A 10-nucleotide sequence including this motif was identified to be the shortest single-stranded RNA to signal via TLR7. An miRNA containing this motif induced the secretion of multiple proinflammatory molecules, which was dependent on the phosphoinositide 3-kinase, mitogen-activated protein kinase, and nuclear factor kappa-light-chain-enhancer of activated B cell signaling pathways. Wild-type mice administered miR-20a-5p, which contained this motif, demonstrated increased leukocyte migration. This effect was significantly ameliorated in TLR7-knockout mice, and mice administered miR-20b-5p, in which the motif was mutated, did not exhibit leukocyte migration. We provide a detailed analysis of miRNAs that activate endosomal TLR7 and identify key nucleotide features of a sequence motif recognized by TLR7.
Assuntos
Citocinas/metabolismo , Leucócitos/imunologia , Glicoproteínas de Membrana/metabolismo , MicroRNAs/genética , Receptor 7 Toll-Like/metabolismo , Animais , Sequência de Bases , Movimento Celular/fisiologia , Células Cultivadas , Citocinas/imunologia , Modelos Animais de Doenças , Leucócitos/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/imunologia , MicroRNAs/metabolismo , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/imunologia , Fator de Necrose Tumoral alfa/metabolismoRESUMO
HIV-1 infection of macrophages is a multistep and multifactorial process that has been shown to be enhanced by exposure to methamphetamine (Meth). In this study, we sought to identify the underlying mechanisms of this effect by quantifying the effect of Meth on the proteome of HIV-1-infected macrophages using sequential windowed acquisition of all theoretical fragment ion mass spectra (SWATH-MS) approach. The analyses identified several members of the Rab family of proteins as being dysregulated by Meth treatment, which was confirmed by bioinformatic analyses that indicated substantial alteration of vesicular transport pathways. Validation of the SWATH-MS was performed using an MRM based approach, which confirmed that Meth exposure affects expression of the Rab proteins. However, the pattern of expression changes were highly dynamic, and displayed high donor-to-donor variability. Surprisingly a similar phenomenon was observed for Actin. Our results demonstrate that Meth affects vesicular transport pathways, suggesting a possible molecular mechanism underlying its effect on HIV infection hMDM and a potential broader effect of Meth on cellular homeostasis.
Assuntos
Infecções por HIV , HIV-1 , Metanfetamina , Humanos , Macrófagos , Metanfetamina/farmacologia , ProteomaRESUMO
Microglia play a key role in brain development, normal homeostasis, and neurodegenerative disorders. Single-cell technologies have led to important findings about microglia, with many animal model studies using single-cell RNA sequencing (scRNA-seq), whereas most human specimen studies using archived frozen brains for single-nucleus RNA sequencing (snRNA-seq). However, microglia compose a small proportion of the total brain tissue; snRNAseq depletes expression of microglia activation genes that characterize many diseases. Here we examine the use of purified, cryopreserved microglia for scRNA-seq. Comparison of scRNA-seq on paired fresh and cryopreserved microglia from rhesus monkeys revealed a high level of correlation of gene expression between the two conditions. Disease-related genes were relatively unaffected, but an increase in immediate-early gene expression was present in cryopreserved cells. Regardless, changes in immediate-early gene expression are still detectable. Cryopreservation of microglia is a suitable procedure for prospectively archiving samples.
RESUMO
A growing literature suggests a relationship between HIV-infection and a molecular profile of age acceleration. However, despite the widely known high prevalence of HIV-related brain atrophy and HIV-associated neurocognitive disorder (HAND), epigenetic age acceleration has not been linked to HIV-related changes in structural MRI. We applied morphological MRI methods to study the brain structure of 110 virally suppressed participants with HIV infection and 122 uninfected controls age 22-72. All participants were assessed for cognitive impairment, and blood samples were collected from a subset of 86 participants with HIV and 83 controls to estimate epigenetic age. We examined the group-level interactive effects of HIV and chronological age and then used individual estimations of epigenetic age to understand the relationship between age acceleration and brain structure. Finally, we studied the effects of HAND. HIV-infection was related to gray matter reductions, independent of age. However, using epigenetic age as a biomarker for age acceleration, individual HIV-related age acceleration was associated with reductions in total gray matter. HAND was associated with decreases in thalamic and hippocampal gray matter. In conclusion, despite viral suppression, accentuated gray matter loss is evident with HIV-infection, and greater biological age acceleration specifically relates to such gray matter loss.
Assuntos
Complexo AIDS Demência/etiologia , Complexo AIDS Demência/genética , Senilidade Prematura/etiologia , Senilidade Prematura/genética , Epigênese Genética , Substância Cinzenta/diagnóstico por imagem , Complexo AIDS Demência/diagnóstico por imagem , Adulto , Idoso , Envelhecimento/genética , Senilidade Prematura/diagnóstico por imagem , Atrofia , Biomarcadores , Encéfalo/patologia , Feminino , Hipocampo/patologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Tálamo/patologia , Adulto JovemRESUMO
HIV persists in cellular reservoirs despite effective combined antiretroviral therapy (cART) and there is viremia flare up upon therapy interruption. Opioids modulate the immune system and suppress antiviral gene responses, which significantly impact people living with HIV (PLWH). However, the effect of opioids on viral reservoir dynamics remain elusive. Herein, we developed a morphine dependent SIVmac251 infected Rhesus macaque (RM) model to study the impact of opioids on HIV reservoirs. RMs on a morphine (or saline control) regimen were infected with SIVmac251. The cART was initiated in approximately half the animals five weeks post-infection, and morphine/saline administration continued until the end of the study. Among the untreated RM, we did not find any difference in plasma/CSF or in cell-associated DNA/RNA viral load in anatomical tissues. On the other hand, within the cART suppressed macaques, there was a reduction in cell-associated DNA load, intact proviral DNA levels, and in inducible SIV reservoir in lymph nodes (LNs) of morphine administered RMs. In distinction to LNs, in the CNS, the size of latent SIV reservoirs was higher in the CD11b+ microglia/macrophages in morphine dependent RMs. These results suggest that in the proposed model, morphine plays a differential role in SIV reservoirs by reducing the CD4+ T-cell reservoir in lymphoid tissues, while increasing the microglia/reservoir size in CNS tissue. The findings from this pre-clinical model will serve as a tool for screening therapeutic strategies to reduce/eliminate HIV reservoirs in opioid dependent PLWH.IMPORTANCE Identification and clearance of HIV reservoirs is a major challenge in achieving a cure for HIV. This is further complicated by co-morbidities that may alter the size of the reservoirs. There is an overlap between the risk factors for HIV and opioid abuse. Opiates have been recognized as prominent co-morbidities in HIV-infected populations. People infected with HIV also abusing opioids have immune modulatory effects and more severe neurological disease. However, the impact of opioid abuse on HIV reservoirs remains unclear. In this study, we used morphine dependent SIVmac251 infected rhesus macaque (RM) model to study the impact of opioids on HIV reservoirs. Our studies suggested that people with HIV who abuse opioids had higher reservoirs in CNS than the lymphoid system. Extrapolating the macaque findings in humans suggests that such differential modulation of HIV reservoirs among people living with HIV abusing opioids could be considered for future HIV cure research efforts.
RESUMO
Both substance use disorder and HIV infection continue to affect many individuals. Both have untoward effects on the brain, and the two conditions often co-exist. In the brain, macrophages and microglia are infectable by HIV, and these cells are also targets for the effects of drugs of abuse, such as the psychostimulant methamphetamine. To determine the interaction of HIV and methamphetamine, we isolated microglia and brain macrophages from SIV-infected rhesus monkeys that were treated with or without methamphetamine. Cells were subjected to single-cell RNA sequencing and results were analyzed by statistical and bioinformatic analysis. In the animals treated with methamphetamine, a significantly increased proportion of the microglia and/or macrophages were infected by SIV. In addition, gene encoding functions in cell death pathways were increased, and the brain-derived neurotropic factor pathway was inhibited. The gene expression patterns in infected cells did not cluster separately from uninfected cells, but clusters comprised of microglia and/or macrophages from methamphetamine-treated animals differed in neuroinflammatory and metabolic pathways from those comprised of cells from untreated animals. Methamphetamine increases CNS infection by SIV and has adverse effects on both infected and uninfected microglia and brain macrophages, highlighting the dual and interacting harms of HIV infection and drug abuse on the brain.
Assuntos
Macrófagos/metabolismo , Macrófagos/virologia , Redes e Vias Metabólicas/efeitos dos fármacos , Metanfetamina/farmacologia , Microglia/metabolismo , Microglia/virologia , Síndrome de Imunodeficiência Adquirida dos Símios/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/fisiologia , Animais , Biomarcadores , Morte Celular , Biologia Computacional , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Mediadores da Inflamação , Macaca mulatta , Macrófagos/imunologia , Microglia/imunologia , Transtornos Neurocognitivos/etiologia , Transtornos Neurocognitivos/metabolismo , Transtornos Neurocognitivos/psicologia , Síndrome de Imunodeficiência Adquirida dos Símios/complicações , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Análise de Célula Única , Carga ViralRESUMO
Importance: Magnetic resonance imaging (MRI) studies of aging adults have shown substantial intersubject variability across various brain metrics, and some of this variability is likely attributable to chronological age being an imprecise measure of age-related change. Accurately quantifying one's biological age could allow better quantification of healthy and pathological changes in the aging brain. Objective: To investigate the association of DNA methylation (DNAm)-based biological age with cortical thickness and to assess whether biological age acceleration compared with chronological age captures unique variance in cortical thinning. Design, Setting, and Participants: This cross-sectional study used high-resolution structural brain MRI data collected from a sample of healthy aging adults who were participating in a larger ongoing neuroimaging study that began in May 2014. This population-based study accrued participants from the greater Omaha, Nebraska, metropolitan area. One hundred sixty healthy adults were contacted for the MRI component, 82 of whom participated in both DNAm and MRI study components. Data analysis was performed from March to June 2019. Main Outcomes and Measures: Vertexwise cortical thickness, DNAm-based biological age, and biological age acceleration compared with chronological age were measured. A pair of multivariable regression models were computed in which cortical thickness was regressed on DNAm-based biological age, controlling for sex in the first model and also controlling for chronological age in the second model. Results: Seventy-nine adult participants (38 women; mean [SD] age, 43.82 [14.50] years; age range, 22-72 years) were included in all final analyses. Advancing biological age was correlated with cortical thinning across frontal, superior temporal, inferior parietal, and medial occipital regions. In addition, biological age acceleration relative to chronological age was associated with cortical thinning in orbitofrontal, superior and inferior temporal, somatosensory, parahippocampal, and fusiform regions. Specifically, for every 1 year of biological age acceleration, cortical thickness would be expected to decrease by 0.024 mm (95% CI, -0.04 to -0.01 mm) in the left orbitofrontal cortex (partial r, -0.34; P = .002), 0.014 mm (95% CI, -0.02 to -0.01 mm) in the left superior temporal gyrus (partial r, -0.36; P = .001), 0.015 mm (95% CI, -0.02 to -0.01 mm) in the left fusiform gyrus (partial r, -0.38; P = .001), 0.015 mm (95% CI, -0.02 to -0.01 mm) in the right fusiform gyrus (partial r, -0.43; P < .001), 0.019 mm (95% CI, -0.03 to -0.01 mm) in the right inferior temporal sulcus (partial r, -0.34; P = .002), and 0.011 mm (95% CI, -0.02 to -0.01 mm) in the right primary somatosensory cortex (partial r, -0.37; P = .001). Conclusions and Relevance: To our knowledge, this is the first study to investigate vertexwise cortical thickness in relation to DNAm-based biological age, and the findings suggest that this metric of biological age may yield additional insight on healthy and pathological cortical aging compared with standard measures of chronological age alone.
Assuntos
Envelhecimento , Encéfalo , Metilação de DNA/fisiologia , Imageamento por Ressonância Magnética/métodos , Adulto , Idoso , Envelhecimento/metabolismo , Envelhecimento/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Senescência Celular/fisiologia , Estudos Transversais , Epigênese Genética , Feminino , Humanos , Masculino , Tamanho do ÓrgãoRESUMO
HIV reservoirs persist despite successful antiretroviral therapy (ART) and are a major obstacle to the eradication and cure of HIV. The mature monocyte subset, CD14+CD16+, contributes to viral reservoirs and HIV-associated comorbidities. Only a subset of monocytes harbors HIV (HIV+), while the rest remain uninfected, exposed cells (HIVexp). We developed an innovative single cell RNA sequencing (scRNAseq) pipeline that detects HIV and host transcripts simultaneously, enabling us to examine differences between HIV+ and HIVexp mature monocytes. Using this, we characterized uninfected, HIV+, and HIVexp primary human mature monocytes with and without ART. We showed that HIV+ mature monocytes do not form their own cluster separately from HIVexp but can be distinguished by significant differential gene expression. We found that ART decreased levels of unspliced HIV transcripts potentially by modulating host transcriptional regulators shown to decrease viral infection and replication. We also identified and characterized mature monocyte subpopulations differentially impacted by HIV and ART. We identified genes dysregulated by ART in HIVexp monocytes compared to their uninfected counterpart and, of interest, the junctional protein ALCAM, suggesting that ART impacts monocyte functions. Our data provide a novel method for simultaneous detection of HIV and host transcripts. We identify potential targets, such as those genes whose expression is increased in HIV+ mature monocytes compared to HIVexp, to block their entry into tissues, preventing establishment/replenishment of HIV reservoirs even with ART, thereby reducing and/or eliminating viral burden and HIV-associated comorbidities. Our data also highlight the heterogeneity of mature monocyte subsets and their potential contributions to HIV pathogenesis in the ART era.IMPORTANCE HIV enters tissues early after infection, leading to establishment and persistence of HIV reservoirs despite antiretroviral therapy (ART). Viral reservoirs are a major obstacle to the eradication and cure of HIV. CD14+CD16+ (mature) monocytes may contribute to establishment and reseeding of reservoirs. A subset of monocytes, consisting mainly of CD14+CD16+ cells, harbors HIV (HIV+), while the rest remain uninfected, exposed cells (HIVexp). It is important to identify cells harboring virus to eliminate reservoirs. Using an innovative single-cell RNA sequencing (scRNAseq) pipeline to detect HIV and host transcripts simultaneously, we characterized HIV+ and HIVexp primary human mature monocytes with and without ART. HIV+ mature monocytes are not a unique subpopulation but rather can be distinguished from HIVexp by differential gene expression. We characterized mature monocyte subpopulations differently impacted by HIV and ART, highlighting their potential contributions to HIV-associated comorbidities. Our data propose therapeutic targets to block HIV+ monocyte entry into tissues, preventing establishment and replenishment of reservoirs even with ART.
Assuntos
Antirretrovirais/farmacologia , Reservatórios de Doenças/virologia , HIV/efeitos dos fármacos , HIV/genética , Monócitos/virologia , Terapia Antirretroviral de Alta Atividade , Células Cultivadas , Humanos , Monócitos/imunologia , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodosRESUMO
Long-acting cabotegravir (CAB) extends antiretroviral drug administration from daily to monthly. However, dosing volumes, injection site reactions and health-care oversight are obstacles towards a broad usage. The creation of poloxamer-coated hydrophobic and lipophilic CAB prodrugs with controlled hydrolysis and tissue penetrance can overcome these obstacles. To such ends, fatty acid ester CAB nanocrystal prodrugs with 14, 18 and 22 added carbon chains were encased in biocompatible surfactants named NMCAB, NM2CAB and NM3CAB and tested for drug release, activation, cytotoxicity, antiretroviral activities, pharmacokinetics and biodistribution. Pharmacokinetics studies, performed in mice and rhesus macaques, with the lead 18-carbon ester chain NM2CAB, showed plasma CAB levels above the protein-adjusted 90% inhibitory concentration for up to a year. NM2CAB, compared with NMCAB and NM3CAB, demonstrated a prolonged drug release, plasma circulation time and tissue drug concentrations after a single 45 mg per kg body weight intramuscular injection. These prodrug modifications could substantially improve CAB's effectiveness.
Assuntos
Antirretrovirais/metabolismo , Nanoestruturas/química , Pró-Fármacos/química , Pró-Fármacos/metabolismo , Piridonas/metabolismo , Animais , Antirretrovirais/farmacologia , Antirretrovirais/toxicidade , Transporte Biológico , Preparações de Ação Retardada , Composição de Medicamentos , Interações Medicamentosas , Estabilidade de Medicamentos , Camundongos , Piridonas/farmacologia , Piridonas/toxicidadeRESUMO
Chronological age remains an imperfect measure of accumulated physiological stress. Biological measures of aging may provide key advantages, allowing scientists focusing on age-related functional changes to use metrics derived from epigenetic factors like DNA methylation (DNAm), which could provide greater precision. Here we investigated the relationship between methylation-based age and an essential cognitive function that is known to exhibit age-related decline: selective attention. We found that DNAm-age predicted selective attention abilities and fully mediated the relationship between selective attention and chronological age. Using neuroimaging with magnetoencephalography, we found that gamma activity in the anterior cingulate was robustly predicted by DNAm-derived biological age, revealing the neural dynamics underlying this DNAm age-related cognitive decline. Anterior cingulate gamma activity also significantly predicted behavior on the selective attention task, indicating its functional relevance. These findings suggest that DNAm age may be a better predictor of cognitive and brain aging than more traditional chronological metrics.
Assuntos
Envelhecimento/fisiologia , Atenção/fisiologia , Encéfalo/fisiologia , Metilação de DNA , Epigênese Genética , Ritmo Gama , Adulto , Idoso , Feminino , Giro do Cíngulo/fisiologia , Humanos , Magnetoencefalografia , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Adulto JovemRESUMO
Macrophages comprise a major component of the human innate immune system that is involved in maintaining homeostasis and responding to infections or other insults. Besides cytokines and chemokines, macrophages presumably influence the surrounding environment by secreting various types of metabolites. Characterization of secreted metabolites under normal and pathological conditions is critical for understanding the complex innate immune system. To investigate the secreted metabolome, we developed a novel workflow consisting of one Reverse Phase (RP) C18 column linked in tandem with a Cogent cholesterol-modified RP C18. This system was used to compare the secreted metabolomes of human monocyte-derived macrophages (hMDM) under normal conditions to those exposed to methamphetamine (Meth). This new experimental approach allowed us to measure 92 metabolites, identify 11 of them as differentially expressed, separate and identify three hydroxymethamphetamine (OHMA) isomers, and identify a new, yet unknown metabolite with a m/z of 192. This study is the first of its kind to address the secreted metabolomic response of hMDM to an insult by Meth. Besides the discovery of novel metabolites secreted by macrophages, we provide a novel methodology to investigate metabolomic profiling.
Assuntos
Macrófagos/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Metabolômica/métodos , Metanfetamina/metabolismo , Cromatografia Líquida , Humanos , Extração Líquido-Líquido , Espectrometria de Massas , Extração em Fase SólidaRESUMO
: Long-acting antiretrovirals can improve therapy and prevention for HIV-1 infection. Current long-acting cabotegravir (CAB LAP) can be administered every other month. Previously, we demonstrated that a myristoylated CAB prodrug encased in poloxamer 407 provided extended plasma drug concentrations. We now demonstrate that this first-generation nanoformulated prodrug can sustain plasma CAB concentrations above the protein-adjusted 90% inhibitory concentration for 4 months in rhesus macaques. A 2.5-fold extension in CAB half-life and a 1.6-fold increase in area under the concentration-time curve were observed compared with CAB LAP.
Assuntos
Fármacos Anti-HIV/farmacocinética , Preparações de Ação Retardada/farmacocinética , Pró-Fármacos/farmacocinética , Piridonas/farmacocinética , Animais , Fármacos Anti-HIV/administração & dosagem , Preparações de Ação Retardada/administração & dosagem , Portadores de Fármacos/administração & dosagem , Meia-Vida , Macaca mulatta , Plasma/química , Poloxâmero/administração & dosagem , Pró-Fármacos/administração & dosagem , Piridonas/administração & dosagemRESUMO
[This corrects the article DOI: 10.1371/journal.ppat.1005032.].