Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(23): e2310314, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38582521

RESUMO

Understanding the environmental health and safety of nanomaterials (NanoEHS) is essential for the sustained development of nanotechnology. Although extensive research over the past two decades has elucidated the phenomena, mechanisms, and implications of nanomaterials in cellular and organismal models, the active remediation of the adverse biological and environmental effects of nanomaterials remains largely unexplored. Inspired by recent developments in functional amyloids for biomedical and environmental engineering, this work shows their new utility as metallothionein mimics in the strategically important area of NanoEHS. Specifically, metal ions released from CuO and ZnO nanoparticles are sequestered through cysteine coordination and electrostatic interactions with beta-lactoglobulin (bLg) amyloid, as revealed by inductively coupled plasma mass spectrometry and molecular dynamics simulations. The toxicity of the metal oxide nanoparticles is subsequently mitigated by functional amyloids, as validated by cell viability and apoptosis assays in vitro and murine survival and biomarker assays in vivo. As bLg amyloid fibrils can be readily produced from whey in large quantities at a low cost, the study offers a crucial strategy for remediating the biological and environmental footprints of transition metal oxide nanomaterials.


Assuntos
Amiloide , Cobre , Animais , Camundongos , Amiloide/metabolismo , Amiloide/química , Amiloide/toxicidade , Cobre/toxicidade , Cobre/química , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Óxido de Zinco/toxicidade , Óxido de Zinco/química , Lactoglobulinas/química , Sobrevivência Celular/efeitos dos fármacos , Simulação de Dinâmica Molecular , Humanos , Óxidos/toxicidade , Óxidos/química
2.
Ecotoxicol Environ Saf ; 267: 115623, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37890250

RESUMO

Metalaxyl (MET) and myclobutanil (MYC) are two widely used chiral fungicides that may pose health risks to non-occupationally exposed populations. Here, the two fungicides were enantiomer-specific quantified in the dietary food and urine of residents in an Eastern China city, to determine the exposure and excretion of these contaminants in different populations. Results indicate that residues of MET and MYC varied with different food items at 0.42-0.86 ng/g fresh weight (FW) and 0.18-0.33 ng/g FW, respectively. In urine samples, the residual levels after creatinine adjusting (CR) ranged from 10.2 to 1715.4 ng/g CR for MET and were below the detection limit up to 320.7 ng/g CR for MYC. Significant age- and gender-related differences were separately found in urinary MET and MYC of different populations. Monte-Carlo simulations suggested that children had higher daily dietary intake (DDI) but lower urinary excretion (DUE) rates than youths, and thus may suffer higher body burdens. The residues of antifungally ineffective enantiomers (S-MET and R-MYC) were slightly higher than their antipodes in foods. Moreover, the enantiomer-selective urinary excretion resulted in higher retention of S-MET and R-MYC in the human body. Our results suggest that both dietary intake and urinary excretion should be enantiomer-specifically considered when assessing the exposure risk and body burden of chiral fungicides in the non-occupationally exposed population. Furthermore, substitutive application of enantiomer-enriched fungicide formulations can not only benefit the antifungal efficacy but also be safer for human health.


Assuntos
Fungicidas Industriais , Poluentes do Solo , Criança , Humanos , Adolescente , Biodegradação Ambiental , Fungicidas Industriais/análise , Poluentes do Solo/análise , Estereoisomerismo , Ingestão de Alimentos
3.
Sci Total Environ ; 901: 166257, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37574057

RESUMO

Perfluorooctanoic acid (PFOA) alternatives such as hexafluoropropylene oxide homologs (HFPOs) cause concern due to increased occurrence in the environment as well as potential bioaccumulation and toxicity. HFPOs have been demonstrated to activate the estrogen receptor (ER) pathway. The ER pathway is homologous and connected to the estrogen-related receptor (ERR) pathway, but HFPOs effects on the ERR pathway have not been studied. Hence, we assessed the potential estrogenic effects of HFPOs via ERRγ pathway. In vitro assays revealed that HFPO dimeric, trimeric, and tetrameric acids (HFPO-DA, -TA, and -TeA, respectively), acted as ERRγ agonists, activating the transcription of both human and zebrafish ERRγ at low concentrations, but inhibiting zebrafish ERRγ at high concentrations. We also found that HFPO-TA promoted the human endometrial cancer cells (Ishikawa cells) proliferation via ERRγ/EGF, Cyclin D1 pathway. The HFPO-TA-induced proliferation of Ishikawa cells was inhibited by co-exposure with a specific antagonist of ERRγ, GSK5182. In vivo exposure of female zebrafish to HFPO-TA disturbed sex hormone levels, interfered with the gene expression involved in estrogen synthesis and follicle regulation, and caused histopathological lesions in the ovaries, which were similar to those induced by a known ERRγ agonist GSK4716. Taken together, this study revealed a new mechanism concerning the estrogenic effect of HFPOs via activation of the ERRγ pathway.

4.
Toxicology ; 494: 153566, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37263573

RESUMO

Environmental and human monitoring studies have witnessed increasing occurrence of emerging per-/poly-fluoroalkyl substances (ePFASs) worldwide. Three classes of ePFASs, namely chlorinated polyfluoroalkylether sulfonic acids, hexafluoropropylene oxide homologues and short-chain perfluoroalkyl acids attracted the most attention. It is, therefore, the goal of this review to systematically and critically analyse the toxicity and toxicological mechanisms of these ePFASs based on the papers published between 2017 and 2022. The review summarized the main findings from both in vivo and in vitro studies, covering the hepatotoxicity of ePFASs and their interference with the endocrine system, including reproductive, developmental and thyroid toxicity. It also summarized the changes in gene expression in the hypothalamic-pituitary-thyroid axis and hypothalamic-pituitary-gonad axis of the model organisms after ePFASs exposure. The changes in gene expression in vitro and in vivo provide a clearer understanding of the toxicological mechanisms of ePFASs interference on hormonal levels (i.e., estradiol, testosterone, and thyroid hormones), developmental disturbance (e.g., swim bladder dysfunction) and lipid metabolism disruption (e.g., lipid droplet accumulation and hepatomegaly). In the end, future research directions on the toxicological mechanisms of ePFASs are suggested.


Assuntos
Fluorocarbonos , Glândula Tireoide , Humanos , Glândula Tireoide/metabolismo , Hormônios Tireóideos/metabolismo , Testosterona/metabolismo , Estradiol/metabolismo , Expressão Gênica , Fluorocarbonos/toxicidade , Fluorocarbonos/metabolismo
5.
Chemosphere ; 329: 138692, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37059203

RESUMO

The accumulation of antibiotics in the environment has ecological impacts that have received less attention than the human health risks of antibiotics, although the effects could be far-reaching. This review discusses the effects of antibiotics on the health of fish and zooplankton, manifesting in direct or dysbiosis-mediated physiological impairment. Acute effects of antibiotics in these organism groups are usually induced at high concentrations (LC50 at ∼100-1000 mg/L) that are not commonly present in aquatic environments. However, when exposed to sub-lethal, environmentally relevant levels of antibiotics (ng/L-µg/L) disruption of physiological homeostasis, development, and fecundity can occur. Antibiotics at similar or lower concentrations can induce dysbiosis of gut microbiota which can affect the health of fish and invertebrates. We show that the data about molecular-level effects of antibiotics at low exposure concentrations are limited, hindering environmental risk assessment and species sensitivity analysis. Fish and crustaceans (Daphnia sp.) were the two groups of aquatic organisms used most often for antibiotic toxicity testing, including microbiota analysis. While low levels of antibiotics impact the composition and function of gut microbiota in aquatic organisms, the correlation and causality of these changes to host physiology are not straightforward. In some cases, negative or lack of correlation have occurred, and, unexpectedly, gut microbial diversity has been unaffected or increased upon exposure to environmental levels of antibiotics. Efforts to incorporate functional analyses of gut microbiota are beginning to provide valuable mechanistic information, but more data is needed for ecological risk assessment of antibiotics.


Assuntos
Antibacterianos , Microbioma Gastrointestinal , Animais , Humanos , Antibacterianos/toxicidade , Disbiose , Invertebrados , Peixes , Organismos Aquáticos
6.
Sci Total Environ ; 873: 162439, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36848992

RESUMO

Adverse outcome pathway (AOP) as a conceptual framework is a powerful tool in the field of toxicology to connect seemingly discrete events at different levels of biological organizations into an organized pathway from molecular interactions to whole organism toxicity. Based on numerous toxicological studies, eight AOPs for reproductive toxicity have been endorsed by the Organization for Economic Co-operation and Development (OECD) Task Force on Hazard Assessment. We have conducted a literature survey on the mechanistic studies on male reproductive toxicity of perfluoroalkyl acids (PFAAs), a class of global environmental contaminants with high persistence, bioaccumulation and toxicity. Using the AOP development strategy, five new AOPs for male reproductive toxicity were proposed here, namely (1) changes in membrane permeability leading to reduced sperm motility, (2) disruption of mitochondrial function leading to sperm apoptosis, (3) decreased gonadotropin-releasing hormone (GnRH) expression in hypothalamus leading to reduced testosterone production in male rats, (4) activation of the p38 signaling pathway leading to disruption of BTB in mice, (5) inhibition of p-FAK-Tyr407 activity leading to the destruction of BTB. The molecular initiating events in the proposed AOPs are different from those in the endorsed AOPs, which are either receptor activation or enzyme inhibition. Although some of the AOPs are still incomplete, they can serve as a building block upon which full AOPs can be developed and applied to not only PFAAs but also other chemical toxicants with male reproductive toxicity.


Assuntos
Rotas de Resultados Adversos , Fluorocarbonos , Masculino , Animais , Camundongos , Ratos , Sêmen , Motilidade dos Espermatozoides , Substâncias Perigosas , Fluorocarbonos/toxicidade , Medição de Risco
7.
Sci Total Environ ; 858(Pt 1): 159755, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36349636

RESUMO

Antibiotics are emerging environmental contaminants with wide attention due to their high consumption and pseudo-persistence in the environment. They have been shown to induce obesity or obesity-related metabolic diseases in experimental animals, but the underlying toxicological mechanisms remain unclear. Here, the disruptive effects of four commonly used antibiotics, namely doxycycline (DC), enrofloxacin (ENR), florfenicol (FF) and sulfamethazine (SMT) on lipid metabolism were investigated in zebrafish (Danio rerio) larvae and murine preadipocyte cell line. Triglyceride (TG) content was reduced after 1 ng/L DC or ENR exposure but was increased at higher concentrations up to 100 mg/L. FF increased and SMT reduced TG content but did not show any concentration dependence. None of the antibiotics had any significant effect on total cholesterol (TC) content in zebrafish except 100 µg/L SMT. Expression levels of 8 lipid metabolism-related genes were also quantified. SMT was most disruptive by up-regulating six genes, followed by FF which up-regulated four genes and down-regulated one gene, whereas DC and ENR both up-regulated one gene. In 3T3-L1 preadipocytes, ENR, FF, and SMT in general increased TG content, while 100 mg/L FF reduced TG substantially. DC did not show any effect up to 10 mg/L, at which TG increased significantly. FF and SMT increased TC slightly at low concentrations but reduced it at high concentrations, whereas TC, DC and ENR had no effect at any tested concentrations. Gene expression measurement also indicated that SMT was most disruptive, followed by FF, DC, and ENR. Reporter gene assays showed that only SMT inhibited the transcriptional activity of peroxisome proliferator-activated receptor γ (PPARγ). The above experimental results and clustering analysis demonstrate that the four antibiotics exerted disruption on lipid metabolism through different mechanisms, and one of the mechanisms for SMT may be inhibition of PPARγ transcriptional activity.


Assuntos
Metabolismo dos Lipídeos , Peixe-Zebra , Camundongos , Animais , Células 3T3-L1 , Peixe-Zebra/metabolismo , Larva , Antibacterianos/farmacologia , PPAR gama/metabolismo , Triglicerídeos/metabolismo , Enrofloxacina , Doxiciclina , Obesidade
8.
Nanomaterials (Basel) ; 14(1)2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38202465

RESUMO

Plant resource sharing mediated by mycorrhizal fungi has been a subject of recent debate, largely owing to the limitations of previously used isotopic tracking methods. Although CdSe/ZnS quantum dots (QDs) have been successfully used for in situ tracking of essential nutrients in plant-fungal systems, the Cd-containing QDs, due to the intrinsic toxic nature of Cd, are not a viable system for larger-scale in situ studies. We synthesized amino acid-based carbon quantum dots (CQDs; average hydrodynamic size 6 ± 3 nm, zeta potential -19 ± 12 mV) and compared their toxicity and uptake with commercial CdSe/ZnS QDs that we conjugated with the amino acid cysteine (Cys) (average hydrodynamic size 308 ± 150 nm, zeta potential -65 ± 4 mV) using yeast Saccharomyces cerevisiae as a proxy for mycorrhizal fungi. We showed that the CQDs readily entered yeast cells and were non-toxic up to 100 mg/L. While the Cys-conjugated CdSe/ZnS QDs were also not toxic to yeast cells up to 100 mg/L, they were not taken up into the cells but remained on the cell surfaces. These findings suggest that CQDs may be a suitable tool for molecular tracking in fungi (incl. mychorrhizal fungi) due to their ability to enter fungal cells.

9.
Nanomaterials (Basel) ; 12(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36500887

RESUMO

Nanomaterial-based solutions for microorganism-related issues are gaining interest in medical fields, consumer applications, and agriculture [...].

10.
Nanomaterials (Basel) ; 12(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36234503

RESUMO

Medical applications of nanotechnology are promising in creating efficient and targeted therapies. However, so far, nanodrug design has not taken into consideration possible effects on human microbiota. The beneficial functions of bacteria could be stimulated by nanodrugs while negative effects on beneficial bacteria could cause risks to human health. Here, simulated intestinal fluid (IF) was optimized for culturing a human commensal and probiotic bacterial strain, Lactobacillus casei, to study the effects of medically relevant NPs­Ag and hyaluronic acid-coated Au NPs (HA-Au NPs)­in conditions pertinent to the gastrointestinal tract. When cultivated either aerobically or anaerobically, the specific growth rates of L. casei were ~0.2 h−1 in IF and ~0.4 h−1 in the standard medium of lactobacilli (MRS). Ag NPs inhibited the growth of L. casei in IF at lower concentrations (EC50 ~ 65 and 15 mg/L in aerobic and anaerobic conditions, respectively) than in MRS (EC50 > 100 mg/L), likely caused by differences in the composition of the two media and different intrinsic growth rates of bacteria in IF and MRS. Ag NP dissolution in IF and MRS did not explain the differences in growth inhibition, implying NP-specific effects. HA-Au NPs were not growth-inhibitory to L. casei up to 250 mg/L. Still, both NPs at sub-growth-inhibitory concentrations suppressed the expression of bacteriocin genes in L. casei, suggesting an inhibitory effect of NPs on the probiotic properties of L. casei, i.e., its competitiveness in microbial communities. However, HA-Au NPs did not appear to affect or even stimulated the immunomodulatory properties of L. casei in human intestinal epithelial cells. Thus, medically relevant NPs at low, sub-bacteriostatic levels can affect the metabolism of beneficial human bacteria and potentially induce changes in the microbiota and immune signaling.

11.
Sci Total Environ ; 853: 158560, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36087672

RESUMO

Plastics contamination in the environment is a major concern. Risk assessment of micro- and nanoplastics (MPL and NPL) poses significant challenges due to MPL and NPL heterogeneity regarding compositional polymers, particle sizes and morphologies in the environment. Yet, there exists considerable toxicological literature on commercial polystyrene (PS) micro- and nanospheres. Although such particles do not directly represent the environmental MPL and NPL, their toxicity data should be used to advance the hazard assessment of plastics. Here, toxicity data of PS micro- and nanospheres for microorganisms, aquatic and terrestrial invertebrates, fish, and higher plants was collected and analyzed. The evaluation of 294 papers revealed that aquatic invertebrates were the most studied organisms, nanosized PS was studied more often than microsized PS, acute exposures prevailed over chronic exposures, the toxicity of PS suspension additives was rarely addressed, and ∼40 % of data indicated no organismal effects of PS. Toxicity mechanisms were mainly studied in fish and nematode Caenorhabditis elegans, providing guidance for relevant studies in higher organisms. Future studies should focus on environmentally relevant plastics concentrations, wide range of organisms, co-exposures with other pollutants, and method development for plastics identification and quantification to fill the gap of bioaccumulation assessment of plastics.


Assuntos
Poluentes Ambientais , Nanosferas , Poluentes Químicos da Água , Animais , Poliestirenos/toxicidade , Microplásticos/toxicidade , Nanosferas/toxicidade , Plásticos/toxicidade , Invertebrados , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Organismos Aquáticos
12.
Sci Total Environ ; 846: 157313, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-35842142

RESUMO

As alternatives to perfluorooctanoic acid (PFOA), hexafluoropropylene oxide (HFPO) homologues, including hexafluoropropylene oxide dimer acid (HFPO-DA), hexafluoropropylene oxide trimer acid (HFPO-TA), and hexafluoropropylene oxide tetramer acid (HFPO-TeA), have attracted widespread attention recently due to their environmental ubiquity and high potential for bioaccumulation and toxicity. In the present study, a set of in vivo mouse and in vitro mouse testicular Sertoli TM4 cell experiments were employed to explore the male reproductive toxicity and underlying mechanisms of HFPO homologues on blood-testis barrier. Tissue and permeability analyses of mice testes after 28-day treatment with 5 mg/kg/day HFPO-DA or PFOA, or 0.05 mg/kg/day HFPO-TA or HFPO-TeA indicated that there was an increase in the degradation of TJ protein occludin in mice with a disrupted blood-testis barrier (BTB). Following exposure to 100 µM HFPO-DA, HFPO-TA or 10 µM PFOA, HFPO-TeA, transepithelial electrical resistance measurements of TM4 cells also indicated BTB disruption. Additionally, as a result of the exposure, matrix metalloproteinase-9 expression was enhanced through activation of p38 MAPK, which promoted the degradation of occludin. On the whole, the results indicated HFPO homologues and PFOA induced BTB disruption through upregulation of p-p38/p38 MAPK/MMP-9 pathway, which promoted the degradation of TJ protein occludin and caused the disruption of TJ.


Assuntos
Barreira Hematotesticular , Fluorocarbonos , Animais , Caprilatos , Fluorocarbonos/toxicidade , Masculino , Camundongos , Ocludina , Óxidos , Proteínas Quinases p38 Ativadas por Mitógeno
13.
J Hazard Mater ; 430: 128365, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35150996

RESUMO

Iron (hydr)oxides and their association with organic matter significantly affect the mobility of heavy metals in natural soils and sediments. However, the behavior of cadmium (Cd) during crystalline iron (hydr)oxide formation in the presence of humic acid (HA) is still unknown. In this study, the speciation of Cd in iron (hydr)oxide-HA coprecipitates were studied by extraction, surface complexation model (SCM) calculation and characterization of the composites during the aging. The results showed that aging promoted the stabilization of ~30-50% of the added Cd ions with minerals in the binary iron (hydr)oxide systems. The reduction of Cd occurred earlier than hematite formation, indicating that the aggregation of amorphous iron (hydr)oxide led to the initial immobilization of Cd. The presence of HA restricted the crystallization of iron (hydr)oxide by the formation of tight mineral nanoparticle-HA aggregates, while there were negligible changes in the speciation of Cd and Fe during aging at high HA concentrations. Therefore, HA promoted the adsorption of Cd onto amorphous iron (hydr)oxide but limited the partition of Cd to mineral aggregates. The knowledge about the role of HA in iron (hydr)oxide transformation and Cd speciation is of great significance for the prediction of heavy metal behavior in soils and sediments.


Assuntos
Cádmio , Substâncias Húmicas , Adsorção , Cádmio/química , Compostos Férricos/química , Substâncias Húmicas/análise , Ferro , Minerais/química , Óxidos/química
14.
Environ Pollut ; 295: 118651, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34883144

RESUMO

Bacteria and their secreted extracellular polymeric substances (EPS) are widely distributed in ecosystems and have high capacity for heavy metal immobilization. The knowledge about the molecular-level interactions with heavy metal ions is essential for predicting the behavior of heavy metals in natural and engineering systems. This comprehensive study using potentiometric titration, Fourier-transform infrared (FTIR) spectroscopy, isothermal titration calorimetry (ITC) and X-ray absorption fine structure (XAFS) was able to reveal the functional diversity and adsorption mechanisms for Pb onto bacteira and the EPS in greater detail than ever before. We identified mono-carboxylic, multi-carboxylic, phosphodiester, phosphonic and sulfhydryl sites and found the partitioning of Pb to these functional groups varied between gram-negative and gram-positive bacterial strains, the soluble and cell-bound EPS and Pb concentrations. The sulfhydryl and phosphodiester groups preferentially complexed with Pb in P. putida cells, while multifunctional carboxylic groups promoted Pb adsorption in B. subtilis cells and the protein fractions in EPS. Though the functional site diversity, the adsorption of Pb to organic ligands occurred spontaneously through a universal entropy increase and inner-sphere complexation mechanism. The functional group scale knowledge have implications for the modeling of heavy metal behavior in the environment and application of these biological resources.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Metais Pesados , Adsorção , Ecossistema , Chumbo , Espectroscopia de Infravermelho com Transformada de Fourier
15.
Front Bioeng Biotechnol ; 9: 683520, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34195180

RESUMO

Nanotechnology is employed across a wide range of antibacterial applications in clinical settings, food, pharmaceutical and textile industries, water treatment and consumer goods. Depending on type and concentration, engineered nanomaterials (ENMs) can also benefit bacteria in myriad contexts including within the human body, in biotechnology, environmental bioremediation, wastewater treatment, and agriculture. However, to realize the full potential of nanotechnology across broad applications, it is necessary to understand conditions and mechanisms of detrimental or beneficial effects of ENMs to bacteria. To study ENM effects, bacterial population growth or viability are commonly assessed. However, such endpoints alone may be insufficiently sensitive to fully probe ENM effects on bacterial physiology. To reveal more thoroughly how bacteria respond to ENMs, molecular-level omics methods such as transcriptomics, proteomics, and metabolomics are required. Because omics methods are increasingly utilized, a body of literature exists from which to synthesize state-of-the-art knowledge. Here we review relevant literature regarding ENM impacts on bacterial cellular pathways obtained by transcriptomic, proteomic, and metabolomic analyses across three growth and viability effect levels: inhibitory, sub-inhibitory or stimulatory. As indicated by our analysis, a wider range of pathways are affected in bacteria at sub-inhibitory vs. inhibitory ENM effect levels, underscoring the importance of ENM exposure concentration in elucidating ENM mechanisms of action and interpreting omics results. In addition, challenges and future research directions of applying omics approaches in studying bacterial-ENM interactions are discussed.

16.
Sci Total Environ ; 778: 146150, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34030374

RESUMO

Parabens are one of the most widely used preservatives in food, pharmaceuticals and personal care products (PCPs) because of their advantageous properties and low toxicity based on the early assessments. However, recent research indicates that parabens may act as endocrine-disrupting chemicals (EDCs) and thus, are considered as chemicals of emerging concern that have adverse human health effects. To provide the basis for future human health studies, we reviewed relevant literature, published between 2005 and 2020, regarding the levels of parabens in the consumer products (pharmaceuticals, PCPs and food), environmental matrices and humans, including susceptible populations, such as pregnant women and children. The analysis showed that paraben detection rates in consumer products, environmental compartments and human populations are high, while the levels vary greatly by country and paraben type. The concentrations of parabens reported in pregnant women (~20-120 µg/L) were an order of magnitude higher than in the general population. Paraben concentrations in food and pharmaceuticals were at the ng/g level, while the levels in PCPs reached mg/g levels. Environmental concentrations ranged from ng/L-µg/L in surface waters to tens of µg/g in wastewater and indoor dust. The levels of human exposure to parabens appear to be higher in the U.S. and EU countries than in China and India, which may change with the increasing production of parabens in the latter countries. The review provides context for future studies to connect paraben exposure levels with human health effects.


Assuntos
Cosméticos , Disruptores Endócrinos , Criança , China , Exposição Ambiental/análise , Feminino , Humanos , Índia , Parabenos/análise , Gravidez
17.
Nanomaterials (Basel) ; 11(4)2021 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-33916509

RESUMO

Nanotoxicology, a discipline transpired by the need to assess the human and environmental safety of nanoscale materials, has evolved over the past 15 years into a mature area of toxicology [...].

18.
Nano Today ; 392021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36937379

RESUMO

Nanotoxicology and nanomedicine are two sub-disciplines of nanotechnology focusing on the phenomena, mechanisms, and engineering at the nano-bio interface. For the better part of the past three decades, these two disciplines have been largely developing independently of each other. Yet recent breakthroughs in microbiome research and the current COVID-19 pandemic demonstrate that holistic approaches are crucial for solving grand challenges in global health. Here we show the Yin and Yang relationship between the two fields by highlighting their shared goals of making safer nanomaterials, improved cellular and organism models, as well as advanced methodologies. We focus on the transferable knowledge between the two fields as nanotoxicological research is moving from pristine to functional nanomaterials, while inorganic nanomaterials - the main subjects of nanotoxicology - have become an emerging source for the development of nanomedicines. We call for a close partnership between the two fields in the new decade, to harness the full potential of nanotechnology for benefiting human health and environmental safety.

19.
J Hazard Mater ; 410: 124568, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33229268

RESUMO

Nanoscale zinc oxide (n-ZnO) is widely used in personal care products and textiles, thus, it would likely be released into human sweat. To better evaluate the potential human health risks of n-ZnO, it is essential to understand its chemical transformations in physiological solutions, such as human sweat, and the resulting changes in the n-ZnO bioavailability. Here, two types of n-ZnO, ZnO nanoparticles (ZnO-NPs) and nanorod-based ZnO nanospheres (ZnO-NSs) were synthesized and incubated in 3 types of simulated sweat with different pH values and phosphate concentrations. The content of Zn3(PO4)2 in the transformed n-ZnO was quantified by selective dissolution of Zn3(PO4)2 in 0.35 M ammonia solution where 100% and 5.5% of Zn3(PO4)2 and ZnO were dissolved, respectively. The kinetics analysis indicated that by 24-48 h the content of Zn3(PO4)2 reached the maximum, being 15-21% at pH 8.0 and 45-70% at pH 5.5 or 4.3. Interestingly, no correlation was observed between the rate constants of Zn3(PO4)2 formation and the specific surface areas of n-ZnO, implying that chemical transformations from n-ZnO to Zn3(PO4)2 in the simulated sweat might not be simply attributed to dissolution and precipitation. Using a variety of characterization techniques, we demonstrated the formation of a ZnO‒Zn3(PO4)2 core-shell structure with the shell consisting of amorphous Zn3(PO4)2 at pH 8.0 and additionally of crystalline Zn3(PO4)2 and Zn3(PO4)2•4H2O at pH 5.5 or 4.3. The phosphate-induced transformation of n-ZnO in the simulated sweat at pH 5.5 and 4.3 greatly reduced the antibacterial efficacy of n-ZnO through moderating the nanoparticle dissolution, indicating limited bioavailability of the NPs upon transformation. The results improve the understanding of the fate and hazards of n-ZnO.


Assuntos
Nanopartículas , Nanosferas , Óxido de Zinco , Antibacterianos , Humanos , Fosfatos , Suor
20.
Environ Pollut ; 269: 115965, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33213949

RESUMO

Currently, silver nanoparticles (AgNPs) are being increasingly used as biocides in various consumer products and if released in the environment they can affect non-target organisms. Therefore, understanding the toxicity mechanism is crucial for both the design of more efficient nano-antimicrobials and for the design of nanomaterials that are biologically and environmentally benign throughout their life-cycle. Here, the ciliate Tetrahymena thermophila was used to elucidate the mechanisms of action of AgNPs by analysing the gene expression profile by RNA-seq and the transcriptomic effects of AgNPs were compared to those induced by soluble silver salt, AgNO3. Exposure to AgNPs at sublethal concentrations for 24 h induced phagocytosis, transport pathways, response to oxidative stress, glutathione peroxidase activity, response to stimulus, oxidation-reduction, proteolysis, and nitrogen metabolism process. Based on gene set enrichment analysis (GSEA), some biological processes appeared targets of both toxicants. In addition to many similarities in affected genes, some effects were triggered only by NPs, like phagocytosis, glutathione peroxidase activity, response to stimulus, protein phosphorylation and nitrogen metabolism process. This research provides evidence that AgNPs compared to AgNO3 at the same concentration of dissolved silver ions dysregulate a higher number of cellular pathways. These findings confirm that AgNPs can induce toxicity not only due to soluble silver ions released from the particles but also to particle intrinsic features.


Assuntos
Nanopartículas Metálicas , Tetrahymena thermophila , Eucariotos , Água Doce , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Nitrato de Prata , Tetrahymena thermophila/genética , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA