Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Mar Environ Res ; 194: 106307, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38150787

RESUMO

Non-native species are expanding globally and can alter ecosystem functions, including food web dynamics, community structure and carbon storage. Seagrass are foundation species that contribute a variety of ecosystem services in near-shore coastal ecosystems, including a significant sink of carbon. In the Caribbean, the rapidly expanding non-native Halophila stipulacea has unknown impacts on carbon storage. To investigate the impacts on carbon storage, we quantified organic carbon (Corg) content in sediment and seagrass tissues from monotypic H. stipulacea beds, mixed native seagrass beds dominated by Thalassia testudinum and Syringodium filiforme, and unvegetated substrate in St. John, USVI. We found native seagrass-vegetated sediment contained 1.3 times more Corg than sediment covered by H. stipulacea, and 1.6 times more Corg than unvegetated areas on average. Whereas, H. stipulacea-dominated substrate stored 1.2 times more Corg than unvegetated substrate. Likewise, native species contained 2.2 times more aboveground biomass and 6.0 times more belowground biomass than H. stipulacea. Since seagrasses are critical sources of carbon sequestration, our results suggest that invading H. stipulacea is associated with lower carbon stocks which has potential implications for conservation activities and climate change mitigation.


Assuntos
Alismatales , Ecossistema , Carbono/análise , Biomassa , Região do Caribe , Sequestro de Carbono
2.
Ecology ; 101(1): e02897, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31531976

RESUMO

Parasites are more diverse and numerous than their hosts and commonly control population dynamics. Whether parasites also regulate key ecosystem processes, such as resistance to climate stress, is unclear. In southern U.S. salt marshes, drought interacts synergistically with keystone grazing to generate extensive ecosystem die-off. Field manipulations of parasite prevalence and salt stress in sediments in healthy marshes demonstrated that trematode parasites, by suppressing feeding activity of grazers that overgraze on drought-stressed plants, have the potential to slow the rate of ecosystem loss. Surveys along 1,000 km of coastline during an intense drought event revealed parasitism is common in grazers on die-off borders and that increasing infection prevalence along marsh die-off borders is negatively correlated with per capita grazing. Combined, results from this field experiment and survey suggested, but did not show, that parasites could affect rates of drought-driven salt marsh die-off. To test whether parasites can indeed protect marshes under real drought conditions, we experimentally manipulated parasite prevalence in grazers over a month-long period on active die-off borders in three North Carolina marshes. Experimentally reducing parasite prevalence markedly increased the rate of plant ecosystem decline, an effect that scaled positively with prevalence. Thus parasites, by generating a trophic cascade, indirectly enhanced ecosystem resistance to overgrazing under intense drought in these North Carolina marshes. The generality of these results across the entire range of this keystone grazer in the southeastern United States needs to be tested, employing both experiments and extensive surveys that examine how the rate of ecosystem decline is mediated by parasitism. Given the ubiquity of parasites in ecosystems, our results suggest that more research effort should be invested in examining the possible roles for parasitism in regulating ecosystem function and stability.


Assuntos
Ecossistema , Parasitos , Animais , Secas , North Carolina , Poaceae , Áreas Alagadas
3.
PeerJ ; 6: e4544, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29607259

RESUMO

Parasites are well-known to alter the behavior of their hosts, but there is still a paucity of knowledge about how parasites modify the behavior of many ecologically influential host species. I studied the keystone grazer, the salt marsh periwinkle (Littoraria irrorata), to determine the influence of infection by the digenetic trematode, Parorchis acanthus, on its grazing behavior. Comparative laboratory grazing studies of wild-collected and experimentally infected snails revealed that Parorchis decreased grazing on live Spartina by more than 80%. Because of the large ecological influence of Littoraria in southern U.S. marshes, parasite modification of snail grazing may have ramifications for marsh ecosystem stability if parasite prevalence is sufficiently high.

4.
Proc Biol Sci ; 282(1811)2015 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-26136442

RESUMO

Although there is mounting evidence that biodiversity is an important and widespread driver of ecosystem multifunctionality, much of this research has focused on small-scale biodiversity manipulations. Hence, which mechanisms maintain patches of enhanced biodiversity in natural systems and if these patches elevate ecosystem multifunctionality at both local and landscape scales remain outstanding questions. In a 17 month experiment conducted within southeastern United States salt marshes, we found that patches of enhanced biodiversity and multifunctionality arise only where habitat-forming foundation species overlap--i.e. where aggregations of ribbed mussels (Geukensia demissa) form around cordgrass (Spartina alterniflora) stems. By empirically scaling up our experimental results to the marsh platform at 12 sites, we further show that mussels--despite covering only approximately 1% of the marsh surface--strongly enhance five distinct ecosystem functions, including decomposition, primary production and water infiltration rate, at the landscape scale. Thus, mussels create conditions that support the co-occurrence of high densities of functionally distinct organisms within cordgrass and, in doing so, elevate salt marsh multifunctionality from the patch to landscape scale. Collectively, these findings suggest that patterns in foundation species' overlap drive variation in biodiversity and ecosystem functioning within and across natural ecosystems.We therefore argue that foundation species should be integrated in our conceptual understanding of forces that moderate biodiversity--ecosystem functioning relationships, approaches for conserving species diversity and strategies to improve the multifunctionality of degraded ecosystems.


Assuntos
Biodiversidade , Mytilidae/fisiologia , Poaceae/fisiologia , Áreas Alagadas , Animais , Conservação dos Recursos Naturais , Invertebrados/fisiologia , Densidade Demográfica , Sudeste dos Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA