Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Gene ; 858: 147198, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36641078

RESUMO

In Cannabis sativa L. the presence of delta 9-tetrahydrocannabinolic acid (THCA) above legal limit is a challenging issue that still restricts the industrial exploitation of this promising crop. In recent years, the interest of entrepreneurs and growers who see hemp as a dynamic and profitable crop was joined by the growing knowledge on C. sativa genetics and genomics, accelerated by the application of high throughput tools. Despite the renewed interest in the species, much remains to be clarified, especially about the long-standing problem of THCA in hemp inflorescences, which could even result in the seizure of the whole harvest. Although several hypotheses have been formulated on the accumulation of this metabolite in industrial varieties, none is conclusive yet. In this work, individuals of a population of the hemp cultivar 'FINOLA' obtained from commercial seeds were investigated for total THC level and examined at molecular level. A marker linked to THCA synthase was found at a high incidence in both male and female plants, suggesting a considerable genetic variability within the seed batch. Full-length sequences encoding for putatively functional THCA synthases were isolated for the first time from the genome of both female and male plants of an industrial hemp variety and, using transcriptional analysis, the THCA synthase expression was quantified in mature inflorescences of individuals identified by the marker. Biochemical analyses finally demonstrated for these plants a 100% association between the predicted and actual chemotype.


Assuntos
Cannabis , Humanos , Cannabis/química , Dronabinol/análise , Dronabinol/química , Dronabinol/metabolismo , Biomarcadores/metabolismo
2.
Plants (Basel) ; 10(9)2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34579390

RESUMO

Cannabis sativa L. has been long cultivated for its narcotic potential due to the accumulation of tetrahydrocannabinolic acid (THCA) in female inflorescences, but nowadays its production for fiber, seeds, edible oil and bioactive compounds has spread throughout the world. However, some hemp varieties still accumulate traces of residual THCA close to the 0.20% limit set by European Union, despite the functional gene encoding for THCA synthase (THCAS) is lacking. Even if some hypotheses have been produced, studies are often in disagreement especially on the role of the cannabichromenic acid synthase (CBCAS). In this work a set of European Cannabis genotypes, representative of all chemotypes, were investigated from a chemical and molecular point of view. Highly specific primer pairs were developed to allow an accurate distinction of different cannabinoid synthases genes. In addition to their use as markers to detect the presence of CBCAS at genomic level, they allowed the analysis of transcriptional profiles in hemp or marijuana plants. While the high level of transcription of THCAS and cannabidiolic acid synthase (CBDAS) clearly reflects the chemical phenotype of the plants, the low but stable transcriptional level of CBCAS in all genotypes suggests that these genes are active and might contribute to the final amount of cannabinoids.

3.
J Agric Food Chem ; 61(46): 11201-11, 2013 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-24191752

RESUMO

(1)H HRMAS-NMR spectroscopy was successfully used to determine the metabolic profiles of 78 tubers obtained from three early genotypes grown under organic and conventional management. The variation in total hydrogen, carbon, and nitrogen contents was also assessed. A PLS-DA multivariate statistical analysis provided good discrimination among the varieties and cropping systems (100% unknown samples placed in a cross-validation blind test), suggesting that this method is a powerful and rapid tool for tracing organic potatoes. As a result of the farming system, the nitrogen content decreased by 11-14% in organic tubers, whereas GABA and lysine accumulated in the organic tubers of all clones. Clear variations in primary metabolites are discussed to provide a better understanding of the metabolic pathway modifications resulting from agronomical practices.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Metabolômica/métodos , Solanum tuberosum/química , Solanum tuberosum/metabolismo , Carbono/análise , Carbono/metabolismo , Nitrogênio/análise , Nitrogênio/metabolismo , Agricultura Orgânica , Solanum tuberosum/genética , Solanum tuberosum/crescimento & desenvolvimento
4.
BMC Genomics ; 9: 176, 2008 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-18416834

RESUMO

BACKGROUND: Since its discovery more than 100 years ago, potato (Solanum tuberosum) tuber cold-induced sweetening (CIS) has been extensively investigated. Several carbohydrate-associated genes would seem to be involved in the process. However, many uncertainties still exist, as the relative contribution of each gene to the process is often unclear, possibly as the consequence of the heterogeneity of experimental systems. Some enzymes associated with CIS, such as beta-amylases and invertases, have still to be identified at a sequence level. In addition, little is known about the early events that trigger CIS and on the involvement/association with CIS of genes different from carbohydrate-associated genes. Many of these uncertainties could be resolved by profiling experiments, but no GeneChip is available for the potato, and the production of the potato cDNA spotted array (TIGR) has recently been discontinued. In order to obtain an overall picture of early transcriptional events associated with CIS, we investigated whether the commercially-available tomato Affymetrix GeneChip could be used to identify which potato cold-responsive gene family members should be further studied in detail by Real-Time (RT)-PCR (qPCR). RESULTS: A tomato-potato Global Match File was generated for the interpretation of various aspects of the heterologous dataset, including the retrieval of best matching potato counterparts and annotation, and the establishment of a core set of highly homologous genes. Several cold-responsive genes were identified, and their expression pattern was studied in detail by qPCR over 26 days. We detected biphasic behaviour of mRNA accumulation for carbohydrate-associated genes and our combined GeneChip-qPCR data identified, at a sequence level, enzymatic activities such as beta-amylases and invertases previously reported as being involved in CIS. The GeneChip data also unveiled important processes accompanying CIS, such as the induction of redox- and ethylene-associated genes. CONCLUSION: Our Global Match File strategy proved critical for accurately interpretating heterologous datasets, and suggests that similar approaches may be fruitful for other species. Transcript profiling of early events associated with CIS revealed a complex network of events involving sugars, redox and hormone signalling which may be either linked serially or act in parallel. The identification, at a sequence level, of various enzymes long known as having a role in CIS provides molecular tools for further understanding the phenomenon.


Assuntos
Adaptação Fisiológica/genética , Temperatura Baixa , Expressão Gênica , Genes de Plantas/genética , Solanum tuberosum/genética , Carboidratos/genética , Análise por Conglomerados , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos , Solanum tuberosum/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA