Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Neurotoxicol Teratol ; 49: 59-73, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25876165

RESUMO

Developmental exposure to inhaled ethanol-gasoline fuel blends is a potential public health concern. Here we assessed cognitive functions in adult offspring of pregnant rats that were exposed to vapors of gasoline blended with a range of ethanol concentrations, including gasoline alone (E0) and gasoline with 15% or 85% ethanol (E15 and E85, respectively). Rat dams were exposed for 6.5h daily to the vapors at concentrations of 0, 3000, 6000, or 9000 ppm in inhalation chambers from gestational day (GD) 9 through 20. Cage controls (offspring of non-exposed dams that remained in the animal facility during these exposures) were also assessed in the E0 experiment, but showed no consistent differences from the offspring of air-exposed controls. Offspring were tested as adults with trace fear conditioning, Morris water maze, or appetitive operant responding. With fear conditioning, no significant effects were observed on cue or context learning. In the water maze, there were no differences in place learning or escaping to a visible platform. However, during the reference memory probe (no platform) male rats exposed prenatally to E85 vapor (6000 and 9000 ppm) failed to show a bias for the target quadrant. Across studies, females (treated and some controls) were less consistent in this measure. Males showed no differences during match-to-place learning (platform moved each day) in any experiment and females showed only transient differences in latency and path length in the E0 experiment. Similarly, no differences were observed in delayed match-to-sample operant performance of E0 males or females; thus this test was not used to evaluate effects of E15 or E85 vapors. During choice reaction time assessments (only males were tested) decision and movement times were unimpaired by any prenatal exposure, while anticipatory responses were increased by vapors of E0 (9000 ppm) and E15 (6000 and 9000 ppm), and the latter group also showed reduced accuracy. E85 vapors did not disrupt any choice reaction time measure. Finally, no response inhibition deficit was observed in a differential reinforcement of low rate (DRL) response schedule in males or females in the E15 or E85 experiments. In summary, prenatal exposure to these fuel blends produced few deficits in adult offspring on these cognitive tests. Significant effects found during a water maze probe trial and choice reaction time tests were observed at vapor concentrations of 6000 ppm or higher, a concentration that is 4-6 orders of magnitude higher than those associated with normal automotive fueling operations and garages. Similar effects were not consistently observed in a previous study of inhaled ethanol, and thus these effects cannot be attributed to the concentration of ethanol in the mixture.


Assuntos
Transtornos Cognitivos/induzido quimicamente , Etanol/toxicidade , Gasolina/toxicidade , Efeitos Tardios da Exposição Pré-Natal/psicologia , Administração por Inalação , Animais , Condicionamento Clássico/efeitos dos fármacos , Condicionamento Operante/efeitos dos fármacos , Etanol/administração & dosagem , Medo/efeitos dos fármacos , Feminino , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Gravidez , Ratos , Ratos Long-Evans , Esquema de Reforço
2.
Neurotoxicol Teratol ; 45: 44-58, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25020118

RESUMO

Increased use of ethanol blends in gasoline suggests a need to assess the potential public health risks of exposure to these fuels. Ethanol consumed during pregnancy is a teratogen. However, little is known about the potential developmental neurotoxicity of ethanol delivered by inhalation, the most likely route of exposure from gasoline-ethanol fuel blends. We evaluated the potential cognitive consequences of ethanol inhalation by exposing pregnant Long Evans rats to clean air or ethanol vapor from gestational days 9-20, a critical period of neuronal development. Concentrations of inhaled ethanol (5000, 10,000, or 21,000 ppm for 6.5h/day) produced modeled peak blood ethanol concentrations (BECs) in exposed dams of 2.3, 6.8, and 192 mg/dL, respectively. In offspring, no dose-related impairments were observed on spatial learning or working memory in the Morris water maze or in operant delayed match-to-position tests. Two measures showed significant effects in female offspring at all ethanol doses: 1) impaired cue learning after trace fear conditioning, and 2) an absence of bias for the correct quadrant after place training during a reference memory probe in the Morris water maze. In choice reaction time tests, male offspring (females were not tested) from the 5000 and 10,000 ppm groups showed a transient increase in decision times. Also, male offspring from the 21,000 ppm group made more anticipatory responses during a preparatory hold period, suggesting a deficit in response inhibition. The increase in anticipatory responding during the choice reaction time test shows that inhaled ethanol yielding a peak BEC of ~200mg/dL can produce lasting effects in the offspring. The lack of a dose-related decrement in the effects observed in females on cue learning and a reference memory probe may reflect confounding influences in the exposed offspring possibly related to maternal care or altered anxiety levels in females. The surprising lack of more pervasive cognitive deficits, as reported by others at BECs in the 200mg/dL range, may reflect route-dependent differences in the kinetics of ethanol. These data show that response inhibition was impaired in the offspring of pregnant rats that inhaled ethanol at concentrations at least 5 orders of magnitude higher than concentrations observed during normal automotive transport and fueling operations, which rarely exceed 100 ppb.


Assuntos
Transtornos Cognitivos/induzido quimicamente , Etanol/toxicidade , Efeitos Tardios da Exposição Pré-Natal , Administração por Inalação , Animais , Comportamento de Escolha/efeitos dos fármacos , Condicionamento Clássico/efeitos dos fármacos , Etanol/administração & dosagem , Feminino , Masculino , Exposição Materna , Gravidez , Ratos , Ratos Long-Evans , Tempo de Reação/efeitos dos fármacos , Aprendizagem Espacial/efeitos dos fármacos
3.
Toxicology ; 281(1-3): 56-62, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21237238

RESUMO

A variety of chemicals, such as organophosphate (OP) and carbamate pesticides, nerve agents, and industrial chemicals, inhibit acetylcholinesterase (AChE) leading to overstimulation of the cholinergic nervous system. The resultant neurotoxicity is similar across mammalian species; however, the relative potencies of the chemicals across and within species depend in part on chemical-specific metabolic and detoxification processes. Carboxylesterases and A-esterases (paraoxonases, PON) are two enzymatic detoxification pathways that have been widely studied. We used an in vitro system to measure esterase-dependent detoxification of 15 AChE inhibitors. The target enzyme AChE served as a bioassay of inhibitor concentration following incubation with detoxifying tissue. Concentration-inhibition curves were determined for the inhibitor in the presence of buffer (no liver), rat liver plus calcium (to stimulate PONs and thereby measure both PON and carboxylesterase), and rat liver plus EGTA (to inhibit calcium-dependent PONs, measuring carboxylesterase activity). Point estimates (concentrations calculated to produce 20, 50, and 80% inhibition) were compared across conditions and served as a measure of esterase-mediated detoxification. Results with well-known inhibitors (chlorpyrifos oxon, paraoxon, methyl paraoxon, malaoxon) were in agreement with the literature, serving to support the use of this assay. Only a few other inhibitors showed slight or a trend towards detoxification via carboxylesterases or PONs (mevinphos, aldicarb, oxamyl). There was no apparent PON- or carboxylesterase-mediated detoxification of the remaining inhibitors (carbofuran, chlorfenvinphos, dicrotophos, fenamiphos, methamidophos, methomyl, monocrotophos, phosphamidon), suggesting that the influence of esterases on these chemicals is minimal. Thus, generalizations regarding these metabolic pathways may not be appropriate. As with other aspects of AChE inhibitors, their metabolic patterns appear to be chemical-specific.


Assuntos
Inibidores da Colinesterase/farmacocinética , Esterases/metabolismo , Fígado/metabolismo , Animais , Arildialquilfosfatase/efeitos dos fármacos , Arildialquilfosfatase/metabolismo , Cálcio/metabolismo , Carboxilesterase/efeitos dos fármacos , Carboxilesterase/metabolismo , Clorpirifos/análogos & derivados , Clorpirifos/farmacocinética , Clorpirifos/farmacologia , Inibidores da Colinesterase/farmacologia , Relação Dose-Resposta a Droga , Esterases/efeitos dos fármacos , Técnicas In Vitro , Inativação Metabólica , Fígado/efeitos dos fármacos , Fígado/enzimologia , Masculino , Ratos , Ratos Long-Evans
4.
Neurotoxicol Teratol ; 32(3): 362-72, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20045049

RESUMO

Low weight at birth is a common adverse developmental effect reported in human populations and animal toxicity studies. Epidemiological evidence links low birth weight to a syndrome of metabolic changes that increase later risk for obesity, type 2 diabetes, hypertension, and cardiovascular disease. The present study used a four-treatment cross-over experimental design to evaluate the selective impact of early nutritional deficiency on metabolism and brain function across the lifespan of male Sprague Dawley rats. Undernutrition was induced prenatally by restricting maternal food intake to 50% of ad lib from GD3 to birth. Postnatal undernutrition was induced by fostering pups at birth to naïve dams in large (n=16) litters as opposed to small (n=8) control litters. Body weights were monitored in the early neonatal period, in early adulthood beginning at 5months and through to senescence at 21months of age. In contrast to recent reports, no increase in the prevalence of obesity was seen in animals born to food restricted dams and reared under ad lib feeding conditions. Behavioral tests of locomotion, learning and memory were performed in young, middle-aged, and aged animals. No effects of pre or postnatal nutritional history were detected. Age-dependent reductions in locomotor activity were detected, as well as deficits in spatial learning as measured in the Morris water maze and in context fear conditioning. These findings indicate that moderate fetal undernutrition followed by neonatal adequate nutrition does not appear to lead to obesity or neurological dysfunction in young adulthood or old age.


Assuntos
Comportamento Animal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Aprendizagem/efeitos dos fármacos , Desnutrição/fisiopatologia , Animais , Condicionamento Psicológico/efeitos dos fármacos , Estudos Cross-Over , Medo/efeitos dos fármacos , Medo/psicologia , Feminino , Transtornos da Nutrição Fetal/fisiopatologia , Idade Gestacional , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Gravidez , Ratos , Ratos Sprague-Dawley , Comportamento Espacial/efeitos dos fármacos
5.
J Toxicol Environ Health A ; 72(1): 47-52, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-18979354

RESUMO

Dibutyltin (DBT), a widely used plastic stabilizer, has been detected in the environment as well as human tissues. Although teratological and developmental effects are well documented, there are no published reports of DBT effects on the developing nervous system. As part of a developmental neurotoxicity study of DBT, tissue samples were periodically collected to determine the distribution of total tin (Sn) in brain and whole blood. Pregnant Sprague-Dawley rats were exposed to 0, 10, or 25 ppm DBT in drinking water from gestational day (GD) 6 to weaning at postnatal day (PND) 21. Beginning on PND 3, half of the litters were directly dosed every 2 to 3 d via oral gavage with 0, 1, or 2.5 mg/kg DBT such that the dose level matched the water concentration (for example, litters with 25 ppm DBT in the water received 2.5 mg/kg). For Sn analysis, brain and blood samples were collected from culled pups on PND2 (males and females pooled), from pups (males and females separately) as well as dams at weaning (PND21), and from adult offspring (males and females) at PND93. Total Sn was quantified using inductively coupled plasma-mass spectroscopy (ICP-MS). At all ages, brain Sn levels were higher than blood. At culling, in the directly dosed pups at weaning, and in dams at weaning, Sn levels in both tissues were linearly related to dose. Weanling pups without direct dosing showed lower levels than either culled pups or dams, indicating that lactational exposure was minimal or negligible even while maternal exposure is ongoing. In the adults, Sn levels persisted in brains of directly dosed rats, and the high-dose females had higher levels than did high-dose males. No Sn was detected in adult blood. Thus, during maternal exposure to DBT in drinking water, Sn is placentally transferred to the offspring, but lactational transfer is minimal, if any. Furthermore, Sn is concentrated in brain compared to blood, and its elimination is protracted, on the order of days to months after exposure ends.


Assuntos
Animais Recém-Nascidos/sangue , Encéfalo/metabolismo , Poluentes Ambientais/farmacocinética , Troca Materno-Fetal/efeitos dos fármacos , Compostos Orgânicos de Estanho/farmacocinética , Administração Oral , Animais , Encéfalo/embriologia , Relação Dose-Resposta a Droga , Poluentes Ambientais/toxicidade , Feminino , Lactação/efeitos dos fármacos , Lactação/fisiologia , Masculino , Exposição Materna , Troca Materno-Fetal/fisiologia , Compostos Orgânicos de Estanho/toxicidade , Gravidez , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual
6.
Neurotoxicol Teratol ; 30(2): 79-87, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18166377

RESUMO

Polybrominated diphenyl ethers (PBDEs) are widely used commercial flame retardants that are accumulating in the environment. PBDEs may interfere with the development of key biological systems, thus leaving children vulnerable to functional impairments in adulthood. There is a growing literature of animal studies that show subtle changes in motor and cognitive function following acute or repeated perinatal exposure to PBDEs. 2,2',4,4'-Brominated diphenyl ether (BDE 47), a very stable PBDE congener, has been shown to accumulate in humans, perhaps as a breakdown product of other PBDEs. The current study examined developmental milestones in male C57BL/6 mice exposed to a single oral dose of BDE 47 (0, 1, 10, or 30 mg/kg) on postnatal day (PND) 10. Behavioral endpoints assessing sensory and motor maturation were examined on PNDs 12, 14, 16, 18, 32, and 88. Motor activity was also examined at 2 and 4 months in a separate group of mice. BDE 47 exposure (particularly the highest dose) significantly increased body weight on PND 47 and thereafter. There was altered ontogeny in a few measures of neuromotor development; however, other developmental milestones and sensory responses were not altered. Motor activity was altered at both 2 and 4 months, with BDE 47-treated mice (all dose groups) displaying pronounced hyperactivity at 4 months. These data indicate that acute exposure to BDE 47 during postnatal development may produce subtle changes in the development of neuromotor systems that may alter adult behavior.


Assuntos
Atividade Motora/efeitos dos fármacos , Neurônios Motores/efeitos dos fármacos , Bifenil Polibromatos/toxicidade , Envelhecimento/fisiologia , Animais , Animais Recém-Nascidos , Comportamento Animal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Éteres Difenil Halogenados , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios Aferentes/efeitos dos fármacos , Gravidez
7.
Neurotoxicol Teratol ; 29(6): 622-33, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17764894

RESUMO

Dimethyltin (DMT) is one of several organotins that are detected in domestic water supplies due to their use as plastic stabilizers for polyvinyl chloride (PVC) and chlorinated PVC (CPVC) products. A limited number of in vitro and in vivo studies suggest that DMT may produce developmental neurotoxicity; therefore, we initiated studies to evaluate long-term neurobehavioral changes in offspring following perinatal exposure. In the first study, female Sprague-Dawley rats were exposed via drinking water to DMT (0, 3, 15, 74 ppm) before mating and throughout gestation and lactation. Male offspring were tested for changes in: 1) preweaning learning in an associative runway task, 2) motor activity ontogeny, 3) spatial learning and retention in the Morris water maze as adults, 4) brain weight, 5) biochemical evidence of apoptosis, and 6) neuropathology. DMT toxicity was expressed as depressed maternal weight gain (74 ppm), and in the offspring, decreased brain weight (3, 74 ppm), decreased apoptosis (all concentrations), mild vacuolation in adult offspring (all concentrations), and slower learning in the water maze (15 ppm) due to altered spatial search patterns. In a second study, DMT exposure (same concentrations) occurred from gestational day 6 to weaning. Male and female offspring were tested. The high concentration again depressed maternal weight gain, decreased offspring birth weight and preweaning growth, and decreased brain weight. Increased and decreased apoptotic markers were measured, depending on age. Learning deficits were observed in the runway at postnatal day 11 (15, 74 ppm) and again in the adult offspring in the water maze (15 ppm). The results of both studies demonstrate a reproducible effect of 15 ppm perinatal DMT exposure on spatial learning. Changes in expression of apoptosis, brain weight, and the occurrence of neuropathological lesions also indicate potential neurotoxicity of DMT. These results were in contrast to earlier findings with monomethyl tin, for which only similar neuropathological lesions were observed. Thus, developmental neurotoxicity may be produced in offspring following gestational exposure to DMT in drinking water.


Assuntos
Estudos de Avaliação como Assunto , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/fisiopatologia , Compostos Orgânicos de Estanho/toxicidade , Efeitos Tardios da Exposição Pré-Natal , Fatores Etários , Análise de Variância , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Tronco Encefálico/patologia , Relação Dose-Resposta a Droga , Ensaio de Imunoadsorção Enzimática , Feminino , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Síndromes Neurotóxicas/patologia , Compostos Orgânicos de Estanho/administração & dosagem , Gravidez , Ratos , Ratos Sprague-Dawley , Fatores de Tempo , Abastecimento de Água
8.
Neurotoxicol Teratol ; 29(3): 377-84, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17321720

RESUMO

Pyrethroids are pesticides with high insecticidal activity and relatively low potency in mammals. The influence of dosing volume on the neurobehavioral syndrome following oral acute exposure to the Type-I pyrethroid insecticide bifenthrin in corn oil was evaluated in adult male Long Evans rats. We tested bifenthrin effects at 1 and 5 ml/kg, two commonly used dose volumes in toxicological studies. Two testing times (4 and 7 h) were used in motor activity and functional observational battery (FOB) assessments. Four to eight doses were examined at either dosing condition (up to 20 or 26 mg/kg, at 1 and 5 ml/kg, respectively). Acute oral bifenthrin exposure produced toxic signs typical of Type I pyrethroids, with dose-related increases in fine tremor, decreased motor activity and grip strength, and increased pawing, head shaking, click response, and body temperature. Bifenthrin effects on motor activity and pyrethroid-specific clinical signs were approximately 2-fold more potent at 1 ml/kg than 5 ml/kg. This difference was clearly evident at 4 h and slightly attenuated at 7 h post-dosing. Benchmark dose (BMD) modeling estimated similar 2-fold potency differences in motor activity and pyrethroid-specific FOB data. These findings demonstrate that dose volume, in studies using corn oil as the vehicle influences bifenthrin potency. Further, these data suggest that inconsistent estimates of pyrethroid potency between laboratories are at least partially due to differences in dosing volume.


Assuntos
Comportamento Animal/efeitos dos fármacos , Inseticidas/toxicidade , Síndromes Neurotóxicas/psicologia , Piretrinas/toxicidade , Estimulação Acústica , Animais , Temperatura Corporal/efeitos dos fármacos , Relação Dose-Resposta a Droga , Força da Mão/fisiologia , Masculino , Atividade Motora/efeitos dos fármacos , Ratos , Ratos Long-Evans , Tremor/induzido quimicamente
9.
Neurotoxicol Teratol ; 28(1): 144-61, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16414243

RESUMO

Current developmental neurotoxicity (DNT) tests that are used for environmental agents require cognitive testing around the age of weaning as well as adulthood. There are challenges associated with testing weanling rodents that are not present with testing older subjects, including rapid brain development, and the impact of food or water restriction necessary for appetitive paradigms. This review provides an overview of cognitive tests that can be used for laboratory rodents in the context of such DNT studies; as such, those requiring surgery or food/water deprivation are excluded. Potential test methods described herein include spontaneous, avoidance, conditioned, spatial, and sequential behavioral assays; although, some procedures meet scientific and regulatory requirements better than others. Scientific judgment should be exercised in the choice of cognitive measures for weanling rodents in DNT studies, and should include an assessment of the sensitivity and efficiency of the procedure, an understanding of the literature and the neuronal substrates involved, and evaluation of available information on the mode(s) of action of the test chemical.


Assuntos
Pesquisa Comportamental/métodos , Transtornos Cognitivos/induzido quimicamente , Transtornos Cognitivos/diagnóstico , Avaliação Pré-Clínica de Medicamentos/métodos , Testes Neuropsicológicos/normas , Toxicologia/métodos , Animais , Animais Recém-Nascidos , Aprendizagem da Esquiva/efeitos dos fármacos , Aprendizagem da Esquiva/fisiologia , Encéfalo/efeitos dos fármacos , Encéfalo/crescimento & desenvolvimento , Encéfalo/fisiopatologia , Transtornos Cognitivos/fisiopatologia , Condicionamento Psicológico/efeitos dos fármacos , Condicionamento Psicológico/fisiologia , Avaliação Pré-Clínica de Medicamentos/tendências , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Ratos , Toxicologia/tendências , Desmame
10.
J Appl Toxicol ; 25(6): 527-34, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16127666

RESUMO

Some 2000 species of cyanobacteria (blue-green algae) occur globally in aquatic habitats. They are able to survive under a wide range of environmental conditions and some produce potent toxins. Toxin production is correlated with periods of rapid growth (blooms) and 25%-70% of blooms may be toxic. Anatoxin-a is an alkaloid neurotoxin that acts as a potent neuro-muscular blocking agent at the nicotinic receptor. Acute toxicity, following consumption of contaminated water, is characterized by rapid onset of paralysis, tremors, convulsions and death. Human exposures may occur from recreational water activities and dietary supplements, but are primarily through drinking water. The current studies were conducted to examine the effect of in utero exposure on postnatal viability, growth and neurodevelopment, to evaluate the potential of in vitro embryotoxicity, and to explore the synergistic relationship between anatoxin-a and the algal toxin microcystin-LR by the oral route. The results of preliminary studies on amphibian toxicity are also reported. Time-pregnant mice received 125 or 200 microg kg(-1) anatoxin-a by intraperitoneal injection on gestation days (GD) 8-12 or 13-17. Pup viability and weight were monitored over a 6-day period. Maternal toxicity (decreased motor activity) was observed at 200 microg kg(-1) in both treatment periods. There were no significant treatment-related effects on pup viability or weight on postnatal day (PND) 1 or 6. The GD 13-17 pups were evaluated on PND 6, 12 and 20 for standard markers of neurodevelopmental maturation (righting reflex, negative geotaxis and hanging grip time). No significant postnatal neurotoxicity was observed. In vitro developmental toxicity was evaluated in GD 8 mouse embryos exposed to 0.1-25 microm anatoxin-a for 26-28 h. Perturbations in mouse yolk sac vasculature were noted from the 1.0 microm concentration in the absence of significant embryonic dysmorphology. Potential algal toxin synergism was tested in mice receiving either 0, 500 or 1,000 microg kg(-1) microcystin-LR by gavage and approximately 50 min later receiving either 0, 500, 1,000 or 2,500 microg kg(-1) anatoxin-a by the same route. No deaths occurred at any dose and no definitive signs of intoxication were observed. Stages 17 and 25 toad embryos (Bufo arenarum) were exposed to 0.03-30.0 mg l(-1) of anatoxin-a for 10 days. Adverse effects included a dose-dependent transient narcosis, edema and loss of equilibrium. Most notable was the occurrence of 100% mortality at the high dose in both groups 6-13 days post-exposure. The observed delay between initial exposure and death is highly unusual for anatoxin-a.


Assuntos
Cianobactérias , Microcistinas/toxicidade , Efeitos Tardios da Exposição Pré-Natal , Animais , Peso Corporal , Bufo arenarum/embriologia , Toxinas de Cianobactérias , Técnicas de Diagnóstico Neurológico , Relação Dose-Resposta a Droga , Embrião de Mamíferos/efeitos dos fármacos , Embrião não Mamífero/efeitos dos fármacos , Feminino , Idade Gestacional , Injeções Intraperitoneais , Camundongos , Microcistinas/administração & dosagem , Atividade Motora/efeitos dos fármacos , Gravidez , Tropanos , Saco Vitelino/efeitos dos fármacos
11.
Toxicol Sci ; 86(2): 375-86, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15901919

RESUMO

This study aimed to model long-term subtoxic human exposure to an organophosphorus pesticide, chlorpyrifos, and to examine the influence of that exposure on the response to intermittent high-dose acute challenges. Adult Long-Evans male rats were maintained at 350 g body weight by limited access to a chlorpyrifos-containing diet to produce an intake of 0, 1, or 5 mg/kg/day chlorpyrifos. During the year-long exposure, half of the rats in each dose group received bi-monthly challenges (spikes) of chlorpyrifos, and the other half received vehicle. Rats were periodically tested using a neurological battery of evaluations and motor activity to evaluate the magnitude of the acute response (spike days) as well as recovery and ongoing chronic effects (non-spike days). Effects of the spikes differed as a function of dietary level for several endpoints (e.g., tremor, lacrimation), and in general, the high-dose feed groups showed greater effects of the spike doses. Animals receiving the spikes also showed some neurobehavioral differences among treatment groups (e.g., hypothermia, sensory and neuromotor differences) in the intervening months. During the eleventh month, rats were tested in a Morris water maze. There were some cognitive deficits observed, demonstrated by slightly longer latency during spatial training, and decreased preference for the correct quadrant on probe trials. A consistent finding in the water maze was one of altered swim patterning, or search strategy. The high-dose feed groups showed more tendency to swim in the outer annulus or to swim very close to the walls of the tank (thigmotaxic behavior). Overall, dietary exposure to chlorpyrifos produced long-lasting neurobehavioral changes and also altered the response to acute challenges.


Assuntos
Clorpirifos/toxicidade , Inibidores da Colinesterase/toxicidade , Inseticidas/toxicidade , Síndromes Neurotóxicas/etiologia , Animais , Clorpirifos/administração & dosagem , Inibidores da Colinesterase/administração & dosagem , Dieta , Inseticidas/administração & dosagem , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Síndromes Neurotóxicas/fisiopatologia , Ratos , Ratos Long-Evans
12.
Toxicol Sci ; 86(1): 101-15, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15800032

RESUMO

Environmental exposures generally involve chemical mixtures instead of single chemicals. Statistical models such as the fixed-ratio ray design, wherein the mixing ratio (proportions) of the chemicals is fixed across increasing mixture doses, allows for the detection and characterization of interactions among the chemicals. In this study, we tested for interaction(s) in a mixture of five organophosphorus (OP) pesticides (chlorpyrifos, diazinon, dimethoate, acephate, and malathion). The ratio of the five pesticides (full ray) reflected the relative dietary exposure estimates of the general population as projected by the US EPA Dietary Exposure Evaluation Model (DEEM). A second mixture was tested using the same dose levels of all pesticides, but excluding malathion (reduced ray). The experimental approach first required characterization of dose-response curves for the individual OPs to build a dose-additivity model. A series of behavioral measures were evaluated in adult male Long-Evans rats at the time of peak effect following a single oral dose, and then tissues were collected for measurement of cholinesterase (ChE) activity. Neurochemical (blood and brain cholinesterase [ChE] activity) and behavioral (motor activity, gait score, tail-pinch response score) endpoints were evaluated statistically for evidence of additivity. The additivity model constructed from the single chemical data was used to predict the effects of the pesticide mixture along the full ray (10-450 mg/kg) and the reduced ray (1.75-78.8 mg/kg). The experimental mixture data were also modeled and statistically compared to the additivity models. Analysis of the 5-OP mixture (the full ray) revealed significant deviation from additivity for all endpoints except tail-pinch response. Greater-than-additive responses (synergism) were observed at the lower doses of the 5-OP mixture, which contained non-effective dose levels of each of the components. The predicted effective doses (ED20, ED50) were about half that predicted by additivity, and for brain ChE and motor activity, there was a threshold shift in the dose-response curves. For the brain ChE and motor activity, there was no difference between the full (5-OP mixture) and reduced (4-OP mixture) rays, indicating that malathion did not influence the non-additivity. While the reduced ray for blood ChE showed greater deviation from additivity without malathion in the mixture, the non-additivity observed for the gait score was reversed when malathion was removed. Thus, greater-than-additive interactions were detected for both the full and reduced ray mixtures, and the role of malathion in the interactions varied depending on the endpoint. In all cases, the deviations from additivity occurred at the lower end of the dose-response curves.


Assuntos
Encéfalo/efeitos dos fármacos , Praguicidas/toxicidade , Animais , Encéfalo/enzimologia , Colinesterases/sangue , Colinesterases/metabolismo , Relação Dose-Resposta a Droga , Masculino , Atividade Motora/efeitos dos fármacos , Ratos , Ratos Long-Evans
13.
J Toxicol Environ Health A ; 67(18): 1477-89, 2004 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-15371233

RESUMO

Some, but not all, organophosphorus pesticides are more acutely toxic to the young as compared to adults. We have developed an in vitro assay that measures the detoxification potential (via carboxylesterase and A-esterases) of tissues. Previous results using this in vitro screen correlated with the marked in vivo sensitivity of the young to chlorpyrifos and also correlated with the equal sensitivity of the young and adult to methamidophos (Padilla et al., 2000). We have now extended these observations to two other pesticides that have already been shown in the literature to be more toxic to the young: parathion (paraoxon) and malathion (malaoxon). In our in vitro assay, liver or plasma from 7-d-old rats were much less efficacious than adult tissues at detoxification of the active metabolites of these two pesticides. Using our in vitro assay we also tested the active metabolite of diazinon, diazoxon, and again found that young liver or plasma possessed much less detoxification capability than adult tissues. From these results, we predicted that young animals would be more sensitive to diazinon, which, in fact, was the case: When postnatal day (PND) 17 or adult rats were given a dosage of 75 mg/kg diazinon, adult brain cholinesterase (ChE) was only inhibited 38%, while the brain ChE in the PND 17 animals showed much more inhibition (75%). We conclude that our in vitro screen may prove to be a useful, quick, convenient test for identifying which organophosphorus pesticides may be more acutely toxic to the young as compared to adults.


Assuntos
Bioensaio/métodos , Inativação Metabólica , Fígado , Malation/análogos & derivados , Programas de Rastreamento/métodos , Modelos Animais , Plasma , Testes de Toxicidade/métodos , Fatores Etários , Animais , Animais Recém-Nascidos , Bioensaio/normas , Feminino , Técnicas In Vitro , Inseticidas/metabolismo , Inseticidas/toxicidade , Fígado/efeitos dos fármacos , Fígado/metabolismo , Malation/toxicidade , Masculino , Programas de Rastreamento/normas , Compostos Organofosforados/toxicidade , Paraoxon/toxicidade , Plasma/efeitos dos fármacos , Plasma/metabolismo , Gravidez , Radiometria/métodos , Radiometria/normas , Ratos , Ratos Long-Evans , Espectrofotometria/métodos , Espectrofotometria/normas , Testes de Toxicidade/normas
14.
Toxicol Sci ; 79(1): 112-22, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-14976349

RESUMO

An evaluation of potential adverse human health effects of disinfection byproducts requires study of both cancer and noncancer endpoints; however, no studies have evaluated the neurotoxic potential of a common haloacetic acid, dibromoacetic acid (DBA). This study characterized the neurotoxicity of DBA during 6-month exposure in the drinking water of rats. Adolescent male and female Fischer 344 rats were administered DBA at 0, 0.2, 0.6, and 1.5 g/l. On a mg/kg/day basis, the consumed dosages decreased greatly over the exposure period, with average intakes of 0, 20, 72, and 161 mg/kg/day. Weight gain was depressed in the high-concentration group, and concentration-related diarrhea and hair loss were observed early in exposure. Testing with a functional observational battery and motor activity took place before dosing and at 1, 2, 4, and 6 months. DBA produced concentration-related neuromuscular toxicity (mid and high concentrations) characterized by limb weakness, mild gait abnormalities, and hypotonia, as well as sensorimotor depression (all concentrations), with decreased responses to a tail-pinch and click. Other signs of toxicity at the highest concentration included decreased activity and chest clasping. Neurotoxicity was evident as early as one month, but did not progress with continued exposure. The major neuropathological finding was degeneration of spinal cord nerve fibers (mid and high concentrations). Cellular vacuolization in spinal cord gray matter (mostly) and in white matter (occasionally) tracts was also observed. No treatment-related changes were seen in brain, eyes, peripheral nerves, or peripheral ganglia. The lowest-observable effect level for neurobehavioral changes was 20 mg/kg/day (produced by 0.2 g/l, lowest concentration tested), whereas this dosage was a no-effect level for neuropathological changes. These studies suggest that neurotoxicity should be considered in the overall hazard evaluation of haloacetic acids.


Assuntos
Acetatos/efeitos adversos , Administração Oral , Síndromes Neurotóxicas/etiologia , Abastecimento de Água/análise , Acetatos/administração & dosagem , Acetatos/farmacocinética , Alopecia/induzido quimicamente , Animais , Comportamento Animal/efeitos dos fármacos , Temperatura Corporal/efeitos dos fármacos , Desinfetantes/efeitos adversos , Desinfetantes/química , Desinfetantes/farmacocinética , Relação Dose-Resposta a Droga , Esquema de Medicação , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Masculino , Atividade Motora/efeitos dos fármacos , Degeneração Neural/diagnóstico , Degeneração Neural/patologia , Síndromes Neurotóxicas/diagnóstico , Ratos , Ratos Endogâmicos F344 , Fatores Sexuais , Nervos Espinhais/efeitos dos fármacos , Nervos Espinhais/patologia , Nervos Espinhais/ultraestrutura , Fatores de Tempo , Poluição Química da Água/efeitos adversos , Poluição Química da Água/análise , Aumento de Peso/efeitos dos fármacos
16.
Toxicology ; 188(2-3): 125-37, 2003 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-12767685

RESUMO

One approach to the toxicological evaluation of chemical mixtures is to construct full dose-response curves for each compound in the presence of a range of doses of each of the other compounds, i.e., a factorial design. This study was undertaken as part of an interdisciplinary project to evaluate a mixture of three environmental pollutants. A full-factorial design was undertaken to determine the neurobehavioral consequences of short-term repeated exposure to five dose levels each of three chemicals, in order to characterize potential two- and three-way interactions. Adult female F344 rats received (p.o.) for 10 days either one of five doses of trichloroethylene, di(2-ethylhexyl)phthalate, or heptachlor, or else one of all possible chemical combinations. Neurobehavioral evaluations were conducted using motor activity and an abbreviated functional observational battery. Response-surface analysis was applied to each of the endpoints. Hypotheses were tested based on the estimated model parameters; of primary interest was the overall test for interaction among the three chemicals. In addition, an abbreviated design was created by fitting only a subset of the data to the model. In general, significant overall interactions that deviated from response additivity were detected for most endpoints (11 of 14). All of the interactions on the neurobehavioral endpoints showed either antagonism, or else an interaction that could not be fully characterized. Often the results of the abbreviated dataset analysis were not the same as for the full-factorial design. This study was extremely intensive, in terms of the number of rats and time required for conduct of the study as well as the data analysis. These results underscore the need for more economical approaches to evaluate the toxic effects of mixtures of chemicals.


Assuntos
Dietilexilftalato/toxicidade , Heptacloro/toxicidade , Inseticidas/toxicidade , Tricloroetileno/toxicidade , Animais , Dietilexilftalato/metabolismo , Exposição Ambiental/efeitos adversos , Feminino , Marcha/efeitos dos fármacos , Marcha/fisiologia , Heptacloro/metabolismo , Inseticidas/metabolismo , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Modelos Estatísticos , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Análise Multivariada , Distribuição Aleatória , Ratos , Ratos Endogâmicos F344 , Solventes/metabolismo , Solventes/toxicidade , Testes de Toxicidade/métodos , Tremor/induzido quimicamente , Tricloroetileno/metabolismo
17.
Toxicol Sci ; 64(2): 216-23, 2001 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11719704

RESUMO

Heptachlor is a persistent cyclodiene pesticide that affects GABAergic function. Recent reports indicate that heptachlor exposure also alters dopamine transporter (DAT) expression and function in adult mice. The aim of this study was to determine whether gestational, perinatal, and/or adolescent heptachlor exposure in rats altered dopamine-receptor and DAT binding. Adolescent exposure to dieldrin was included to evaluate the generality of the findings. Sprague-Dawley rats received doses (po) ranging from 0 to 8.4 mg/kg/day of heptachlor, or dieldrin, 3 mg/kg/day, during different developmental periods. There were dose-related decreases in maternal weight gain and pup survival, as well as delayed righting reflex, at heptachlor doses > or =3 mg/kg/day. There were no changes in striatal dopamine receptor-D1 ([(3)H]SCH-23390) and -D2 ([(3)H]spiperone) binding in preweanling pups exposed perinatally to heptachlor, and no differences in the response of adult rats to the motor activity-increasing effects of d-amphetamine. However, there were significant (27-64%) increases in striatal DAT binding of [(3)H]mazindol in preweanling rats exposed only gestationally. In rats exposed perinatally and/or during adolescence, there were also increases (34-65%) in striatal DAT binding at postnatal days (PND) 22, 43, and 128. Adolescent exposure to dieldrin also increased DAT binding. In other rats exposed perinatally and throughout adolescence, even the lowest dose of heptachlor 0.3 mg/kg/d increased DAT binding on PND 130. The DAT affinity for mazindol was unchanged in heptachlor-exposed striata. In vitro binding studies indicated that heptachlor (> or =10 microM) displaced mazindol binding. Thus, gestational, perinatal, and/or adolescent exposure to heptachlor produced an increase in DAT binding as early as PND 10, and this change persisted into adulthood.


Assuntos
Corpo Estriado/efeitos dos fármacos , Heptacloro/toxicidade , Inseticidas/toxicidade , Glicoproteínas de Membrana , Proteínas de Membrana Transportadoras/metabolismo , Proteínas do Tecido Nervoso , Animais , Comportamento Animal/efeitos dos fármacos , Ligação Competitiva/efeitos dos fármacos , Corpo Estriado/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina , Relação Dose-Resposta a Droga , Feminino , Masculino , Exposição Materna , Troca Materno-Fetal , Atividade Motora/efeitos dos fármacos , Gravidez , Ligação Proteica/efeitos dos fármacos , Ensaio Radioligante , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo
18.
Toxicol Sci ; 62(2): 339-52, 2001 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-11452147

RESUMO

Studies are under way to address concerns of potential persistent immunotoxic, reproductive, and neurotoxic effects of perinatal exposure to several pesticides. Tebuconazole, a triazole fungicide, was evaluated as part of this project. Sprague-Dawley dams were administered tebuconazole (0, 6, 20, or 60 mg/kg) by oral gavage daily from gestational day 14 to postnatal day (PND)7; the pups were then dosed daily at the same levels from PND7-42. Separate groups of rats were used for testing of immunological parameters, neurobehavioral testing using a screening battery of functional tests, and cognitive evaluations. Other groups of rats were evaluated for reproductive development and function, while yet others were sacrificed at the end of the dosing period for histological analyses of major organs systems, including neuropathological assessments. Pup viability and body weight were decreased in the highest dose group. There were no differences in the fertility indices in the exposed rats mated as adults. In the sheep RBC-immunized high-dose rats, spleen weights and cellularity were increased, and the ratio of cell types was altered compared to controls. There were, however, no biologically significant changes in the immune function of these rats. At necropsy on PND46 or 152, kidney, liver, and spleen weights were altered by tebuconazole treatment, but a dose-response relationship was not clear for most organs; only decreased kidney and increased liver weights were consistent in both sexes. Histological analyses were generally unremarkable outside of the brain. One month after the end of dosing, acquisition of learning the platform location in a water tank (i.e., Morris water maze) was impaired in the high-dose group; there were no differences in neuromuscular ability, motor activity, or swim speed to account for this finding. Furthermore, there was no effect on recall of the position during a free-swim trial. Neuropathological evaluations revealed pyknotic cells across hippocampal cell fields in animals of all tebuconazole treatment groups, with the highest incidence in the 20 and 60 mg/kg/day dose groups, coincident with cell loss within pyramidal cell layer of CA3-4 cell fields of the hippocampus and layer V of the neocortex. Thus, perinatal exposure to tebuconazole produced neurobehavioral deficits and neuropathology in rats, but did not alter immunological or reproductive function.


Assuntos
Fungicidas Industriais/toxicidade , Sistema Imunitário/efeitos dos fármacos , Sistema Nervoso/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal , Reprodução/efeitos dos fármacos , Triazóis/toxicidade , Animais , Feminino , Sistema Imunitário/fisiologia , Gravidez , Ratos
19.
Neurotoxicol Teratol ; 23(1): 33-44, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11274874

RESUMO

It is often assumed that cognitive function is more sensitive to neurotoxic chemicals than are the unconditioned behaviors employed in neurobehavioral screens; however, direct comparisons of the sensitivity of these test methods are lacking. The present studies were conducted to compare the effects of the widely used cholinesterase-inhibiting insecticide, chlorpyrifos (O,O'-diethyl O-3,5,6-trichloro-2-pyridyl phosphorothionate, CPF), on a visual signal detection task (SDT) with its effects on a neurobehavioral test battery. Adult male Long-Evans rats were trained to perform the SDT, dosed with CPF, and then assessed with both test instruments. Oral CPF (50 mg/kg) impaired signal detection for 8 days, and subcutaneous CPF (250 mg/kg) did so for 4 weeks. CPF (30 and 50 mg/kg po and 250 mg/kg sc) also lowered activity in the test battery for up to 18 days. Thus, CPF impaired attention and altered behavior in the test battery in the same dose ranges under two very different dosing scenarios.


Assuntos
Clorpirifos/toxicidade , Cognição/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Neurotoxinas/toxicidade , Detecção de Sinal Psicológico/efeitos dos fármacos , Acetilcolinesterase/sangue , Animais , Butirilcolinesterase/sangue , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/métodos , Inseticidas/toxicidade , Masculino , Dor , Ratos , Ratos Long-Evans , Valores de Referência , Fatores de Tempo , Tato
20.
Toxicol Sci ; 60(2): 315-26, 2001 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11248144

RESUMO

The developing nervous system has been identified as a potential target of pesticide exposure. Heptachlor is a cyclodiene pesticide that was widely used for many years, and for which inadvertent exposure to children and fetuses took place in the early 1980s; yet little is known regarding the developmental neurotoxicity of it and other cyclodienes. The aim of this study was to determine whether perinatal heptachlor exposure results in persistent alterations in nervous system function. Pregnant Sprague-Dawley dams were dosed from gestational day (GD) 12 to postnatal day (PND) 7, whereupon the rat pups were dosed directly until PND 21 (group A) or PND 42 (group B). Dose levels were 0, 0.03, 0.3, or 3 mg/kg/day, po. There were no dose-related effects on maternal weight, litter size, or pup growth. GABA(A) receptor binding (using [(35)S] tert-butylbicyclophosphorothionate; TBPS) and GABA-stimulated Cl- flux were evaluated in control and high-dose brain tissues taken on PND 7, 21, and 43. The B(max) values for [(35)S]-TBPS binding in brainstem, but not cortex, were decreased in female rats across all ages tested. There were no such changes in male rats, nor were K(D) values altered in either tissue or gender. GABA-stimulated Cl- flux was decreased in female cortex synaptoneurosomes only on PND 21. The ontogeny of the righting response (PND 2-5) was delayed in the high-dose females. All subsequent testing took place a week to months after dosing ceased. The functional observational battery (FOB) showed treatment-related, but not necessarily dose-related, changes in different aspects of the rat's reactivity and activity levels. Group-A rats also showed altered within-session habituation of motor activity. There were no heptachlor-related differences in motor activity following challenge with a range of chlordiazepoxide doses. Cognitive assessments were conducted in both groups of rats. There were no statistically significant differences among treatment groups in a one-trial passive avoidance test, although there was a trend toward less learning. In group B, rats (both sexes), heptachlor altered spatial learning in the Morris water maze during two weeks of daily training (2 trials/day). On probe trials, heptachlor-treated rats did not show significant preference for the correct quadrant (all dose groups in males, high dose in females). These rats did not show alterations on subsequent working-memory training (where the platform position was relearned each day). Thus, perinatal exposure to heptachlor produced neurochemical and persistent neurobehavioral changes, including alterations in spatial learning and memory.


Assuntos
Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Desenvolvimento Embrionário e Fetal/efeitos dos fármacos , Heptacloro/toxicidade , Inseticidas/toxicidade , Efeitos Tardios da Exposição Pré-Natal , Animais , Animais Recém-Nascidos , Peso Corporal/efeitos dos fármacos , Encéfalo/embriologia , Encéfalo/fisiopatologia , Química Encefálica , Cloretos/metabolismo , Feminino , Heptacloro/farmacocinética , Inseticidas/farmacocinética , Tamanho da Ninhada de Vivíparos/efeitos dos fármacos , Masculino , Gravidez , Ratos , Ratos Sprague-Dawley , Receptores de GABA/metabolismo , Distribuição Tecidual , Testes de Toxicidade , Ácido gama-Aminobutírico/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA