Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Elife ; 112022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35411847

RESUMO

While health effects of conventional tobacco are well defined, data on vaping devices, including one of the most popular e-cigarettes which have high nicotine levels, are less established. Prior acute e-cigarette studies have demonstrated inflammatory and cardiopulmonary physiology changes while chronic studies have demonstrated extra-pulmonary effects, including neurotransmitter alterations in reward pathways. In this study we investigated the impact of inhalation of aerosols produced from pod-based, flavored e-cigarettes (JUUL) aerosols three times daily for 3 months on inflammatory markers in the brain, lung, heart, and colon. JUUL aerosol exposure induced upregulation of cytokine and chemokine gene expression and increased HMGB1 and RAGE in the nucleus accumbens in the central nervous system. Inflammatory gene expression increased in the colon, while gene expression was more broadly altered by e-cigarette aerosol inhalation in the lung. Cardiopulmonary inflammatory responses to acute lung injury with lipopolysaccharide were exacerbated in the heart. Flavor-specific findings were detected across these studies. Our findings suggest that daily e-cigarette use may cause neuroinflammation, which may contribute to behavioral changes and mood disorders. In addition, e-cigarette use may cause gut inflammation, which has been tied to poor systemic health, and cardiac inflammation, which leads to cardiovascular disease.


The use of e-cigarettes or 'vaping' has become widespread, particularly among young people and smokers trying to quit. One of the most popular e-cigarette brands is JUUL, which offers appealing flavors and a discrete design. Many e-cigarette users believe these products are healthier than traditional tobacco products. And while the harms of conventional tobacco products have been extensively researched, the short- and long-term health effects of e-cigarettes have not been well studied. There is even less information about the health impacts of newer products like JUUL. E-cigarettes made by JUUL are different relative to prior generations of e-cigarettes. The JUUL device uses disposable pods filled with nicotinic salts instead of nicotine. One JUUL pod contains as much nicotine as an entire pack of cigarettes (41.3 mg). These differences make studying the health effects of this product particularly important. Moshensky, Brand, Alhaddad et al. show that daily exposure to JUUL aerosols increases the expression of genes encoding inflammatory molecules in the brain, lung, heart and colon of mice. In the experiments, mice were exposed to JUUL mint and JUUL mango flavored aerosols for 20 minutes, 3 times a day, and for 4 and 12 weeks. The changes in inflammatory gene expression varied depending on the flavor. This suggests that the flavorings themselves contribute to the observed changes. The findings suggest that daily use of pod-based e-cigarettes or e-cigarettes containing high levels of nicotinic salts over months to years, may cause inflammation in various organs, increasing the risk of disease and poor health. This information may help individuals, clinicians and policymakers make more informed decisions about e-cigarettes. Further studies assessing the impact of these changes on long-term physical and mental health in humans are desperately needed. These should assess health effects across different e-cigarette types, flavors and duration of use.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Mangifera , Mentha , Aerossóis , Animais , Encéfalo , Colo , Inflamação , Pulmão , Camundongos
2.
Am J Physiol Lung Cell Mol Physiol ; 321(6): L1134-L1146, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34704852

RESUMO

Over 40 million people use e-cigarettes worldwide, but the impact of chronic e-cigarette use on health has not been adequately defined. In particular, effects of e-cigarette aerosol inhalation on inflammation and host defenses across the body are not fully understood. We conducted a longitudinal cohort pilot study to explore changes in the inflammatory state and monocyte function of e-cigarette users (n = 20) versus healthy controls (n = 13) and to evaluate effects of e-cigarette use reduction on the same. Saliva, sputum, and blood were obtained from e-cigarette users at baseline and after a 2-wk intervention of decreased e-cigarette use. Overall, across 38 proteins quantified by multiplex, airway samples from e-cigarette users tended to have decreased levels of immunomodulatory proteins relative to healthy controls, whereas levels of cytokines, chemokines, and growth factors in the circulation tended to be elevated. Specifically, e-cigarette users had lower levels of IL-1 receptor antagonist (IL-1Ra) in saliva (P < 0.0001), with higher IL-1Ra and growth-regulated oncogene (GRO) levels in sputum (P < 0.01 and P < 0.05, respectively), and higher levels of both TNFß (P < 0.0001) and VEGF (P < 0.0001) in plasma. Circulating monocytes from e-cigarette users had alterations in their inflammatory phenotype in response to reduced e-cigarette use, with blunted IL-8 and IL-6 release upon challenge with bacterial lipopolysaccharide (P < 0.001 and P < 0.05, respectively), suggesting a decreased ability to appropriately respond to bacterial infection. Based on these findings, chronic inhalation of e-cigarette aerosols alters the inflammatory state of the airways and systemic circulation, raising concern for the development of both inflammatory and infectious diseases in chronic users of e-cigarettes.


Assuntos
Citocinas/metabolismo , Sistemas Eletrônicos de Liberação de Nicotina/estatística & dados numéricos , Inflamação/diagnóstico , Sistema Respiratório/imunologia , Fumaça/efeitos adversos , Vaping/efeitos adversos , Adolescente , Adulto , Estudos de Casos e Controles , Citocinas/análise , Feminino , Humanos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Estudos Longitudinais , Masculino , Projetos Piloto , Plasma/efeitos dos fármacos , Plasma/metabolismo , Sistema Respiratório/efeitos dos fármacos , Sistema Respiratório/metabolismo , Sistema Respiratório/patologia , Saliva/efeitos dos fármacos , Saliva/metabolismo , Escarro/efeitos dos fármacos , Escarro/metabolismo , Adulto Jovem
3.
Front Microbiol ; 12: 599664, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34135868

RESUMO

Electronic (e)-cigarettes have been advocated as a safer alternative to conventional tobacco cigarettes. However, there is a paucity of data regarding the impact of e-cigarette aerosol deposition on the human oral microbiome, a key component in human health and disease. We aimed to fill this knowledge gap through a comparative analysis of the microbial community profiles from e-cigarette users and healthy controls [non-smokers/non-vapers (NSNV)]. Moreover, we sought to determine whether e-cigarette aerosol exposure from vaping induces persistent changes in the oral microbiome. To accomplish this, salivary and buccal mucosa samples were collected from e-cigarette users and NSNV controls, with additional oral samples collected from e-cigarette users after 2 weeks of decreased use. Total DNA was extracted from all samples and subjected to PCR amplification and sequencing of the V3-V4 hypervariable regions of the 16S rRNA gene. Our analysis revealed several prominent differences associated with vaping, specific to the sample type (i.e., saliva and buccal). In the saliva, e-cigarette users had a significantly higher alpha diversity, observed operational taxonomic units (OTUs) and Faith's phylogenetic diversity (PD) compared to NSNV controls, which declined with decreased vaping. The buccal mucosa swab samples were marked by a significant shift in beta diversity between e-cigarette users and NSNV controls. There were also significant differences in the relative abundance of several bacterial taxa, with a significant increase in Veillonella and Haemophilus in e-cigarette users. In addition, nasal swabs demonstrated a trend toward higher colonization rates with Staphylococcus aureus in e-cigarette users relative to controls (19 vs. 7.1%; p = n.s.). Overall, these data reveal several notable differences in the oral bacterial community composition and diversity in e-cigarette users as compared to NSNV controls.

4.
iScience ; 24(2): 102035, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33537654

RESUMO

E-cigarette usage continues to rise, yet the safety of e-cigarette aerosols is questioned. Using murine models of acute and chronic e-cigarette aerosol inhalation, murine colon transcriptomics, and murine and human gut-derived organoids in co-culture models, we assessed the effects of e-cigarette use on the gut barrier. Histologic and transcriptome analyses revealed that chronic, but not acute, nicotine-free e-cigarette use increased inflammation and reduced expression of tight junction (TJ) markers. Exposure of murine and human enteroid-derived monolayers (EDMs) to nicotine-free e-cigarette aerosols alone or in co-culture with bacteria also causes barrier disruption, downregulation of TJ protein, and enhanced inflammation in response to infection. These data highlight the harmful effects of "non-nicotine" component of e-cigarettes on the gut barrier. Considering the importance of an intact gut barrier for host fitness and the impact of gut mucosal inflammation on a multitude of chronic diseases, these findings are broadly relevant to both medicine and public health.

5.
Am J Physiol Lung Cell Mol Physiol ; 320(5): L821-L831, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33565357

RESUMO

Acute respiratory distress syndrome (ARDS) is a common cause of mortality in patients with acute kidney injury (AKI). Inflammatory crosstalk from the kidney to the lung has been shown to contribute to lung injury after AKI, but anti-inflammatory therapies have not been proven beneficial in human studies. Recently, AKI was shown to alter mitochondria and related metabolic pathways in the heart, but the impact of AKI on lung metabolism has not been investigated to our knowledge. In this study, we evaluated the metabolomic profile of the lung following renal ischemia and reperfusion to identify novel pathways that may be modifiable. We randomized C57BL/6 mice to 20 minutes of bilateral renal arterial clamping or sham operation under ketamine/xylazine anesthesia. At 4 hours after reperfusion, we found a significant increase in markers of lung injury, as well as significant metabolomic changes across lung, kidney, plasma and bronchoalveolar lavage fluid (BALF) compared to shams. Comparative analyses revealed that the fatty acid oxidation pathway was the most significantly altered metabolic pathway, a finding which is consistent with mitochondrial dysfunction systemically and in the lung. These metabolomic changes correlated with the extracellular accumulation of the mitochondrial damage associated molecular patterns (mtDAMPs), mitochondrial DNA (mtDNA) and transcription factor A, mitochondria (TFAM). Finally, we found that intraperitoneal injection of renal mtDAMPs caused metabolomic changes consistent with mitochondrial dysfunction in the lung in vivo. Mitochondrial function and mtDAMPs warrant further investigation as potential therapeutic targets in preventing lung injury because of AKI.


Assuntos
Injúria Renal Aguda/complicações , Alarminas/metabolismo , Lesão Pulmonar/patologia , Metaboloma , Mitocôndrias/patologia , Animais , Lesão Pulmonar/etiologia , Lesão Pulmonar/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo
6.
Front Pharmacol ; 10: 885, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31456684

RESUMO

Electronic (E)-cigarettes are the latest form of nicotine delivery device and are highly popular in the general population. It is currently unknown whether vaping E-cigarettes (E-CIGs) leads to nicotine addiction. Alterations in the levels of the neurotransmitters in the mesocorticolimbic areas have been reported to mediate the initiation and development of nicotine addiction. Therefore, to determine whether E-CIGs activate the same addiction pathways as conventional cigarettes, we investigated for the effects of daily inhalation of nicotine (24 mg/ml)-containing E-CIG vapor for 6 months on the concentrations of these neurotransmitters in the frontal cortex (FC) and striatum (STR) of male C57BL/6 mice as compared to control group that was exposed to air only. We reported here that 6-month E-CIG vapor containing nicotine inhalation decreased dopamine concentration only in the STR. There were no changes in serotonin concentrations in the FC or STR. Chronic E-CIG exposure also increased glutamate concentration in the STR alone, while glutamine concentrations were increased in both the FC and STR. We found that E-CIG exposure also decreased GABA concentration only in the FC. These data suggest that chronic E-CIG use alters homeostasis of several neurotransmitters in the mesocorticolimbic areas, which may result in the development of nicotine dependence in E-CIG users.

7.
Am J Physiol Regul Integr Comp Physiol ; 314(6): R834-R847, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29384700

RESUMO

Electronic (e)-cigarettes theoretically may be safer than conventional tobacco. However, our prior studies demonstrated direct adverse effects of e-cigarette vapor (EV) on airway cells, including decreased viability and function. We hypothesize that repetitive, chronic inhalation of EV will diminish airway barrier function, leading to inflammatory protein release into circulation, creating a systemic inflammatory state, ultimately leading to distant organ injury and dysfunction. C57BL/6 and CD-1 mice underwent nose only EV exposure daily for 3-6 mo, followed by cardiorenal physiological testing. Primary human bronchial epithelial cells were grown at an air-liquid interface and exposed to EV for 15 min daily for 3-5 days before functional testing. Daily inhalation of EV increased circulating proinflammatory and profibrotic proteins in both C57BL/6 and CD-1 mice: the greatest increases observed were in angiopoietin-1 (31-fold) and EGF (25-fold). Proinflammatory responses were recapitulated by daily EV exposures in vitro of human airway epithelium, with EV epithelium secreting higher IL-8 in response to infection (227 vs. 37 pg/ml, respectively; P < 0.05). Chronic EV inhalation in vivo reduced renal filtration by 20% ( P = 0.017). Fibrosis, assessed by Masson's trichrome and Picrosirius red staining, was increased in EV kidneys (1.86-fold, C57BL/6; 3.2-fold, CD-1; P < 0.05), heart (2.75-fold, C57BL/6 mice; P < 0.05), and liver (1.77-fold in CD-1; P < 0.0001). Gene expression changes demonstrated profibrotic pathway activation. EV inhalation altered cardiovascular function, with decreased heart rate ( P < 0.01), and elevated blood pressure ( P = 0.016). These data demonstrate that chronic inhalation of EV may lead to increased inflammation, organ damage, and cardiorenal and hepatic disease.


Assuntos
Barreira Alveolocapilar/efeitos dos fármacos , Sistemas Eletrônicos de Liberação de Nicotina , Inflamação/induzido quimicamente , Nicotina/administração & dosagem , Nicotina/efeitos adversos , Agonistas Nicotínicos/administração & dosagem , Agonistas Nicotínicos/efeitos adversos , Animais , Citocinas/sangue , Feminino , Fibrose/induzido quimicamente , Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Cultura Primária de Células , Mucosa Respiratória/citologia , Mucosa Respiratória/efeitos dos fármacos , Sistema Respiratório/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA