Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Epilepsia ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39101302

RESUMO

OBJECTIVE: To use intracranial electroencephalography (EEG) to characterize functional magnetic resonance imaging (fMRI) activation maps associated with high-frequency oscillations (HFOs) (80-250 Hz) and examine their proximity to HFO- and seizure-generating tissue. METHODS: Forty-five patients implanted with intracranial depth electrodes underwent a simultaneous EEG-fMRI study at 3 T. HFOs were detected algorithmically from cleaned EEG and visually confirmed by an experienced electroencephalographer. HFOs that co-occurred with interictal epileptiform discharges (IEDs) were subsequently identified. fMRI activation maps associated with HFOs were generated that occurred either independently of IEDs or within ±200 ms of an IED. For all significant analyses, the Maximum, Second Maximum, and Closest activation clusters were identified, and distances were measured to both the electrodes where the HFOs were observed and the electrodes involved in seizure onset. RESULTS: We identified 108 distinct groups of HFOs from 45 patients. We found that HFOs with IEDs produced fMRI clusters that were closer to the local field potentials of the corresponding HFOs observed within the EEG than HFOs without IEDs. In addition to the fMRI clusters being closer to the location of the EEG correlate, HFOs with IEDs generated Maximum clusters with greater z-scores and larger volumes than HFOs without IEDs. We also observed that HFOs with IEDs resulted in more discrete activation maps. SIGNIFICANCE: Intracranial EEG-fMRI can be used to probe the hemodynamic response to HFOs. The hemodynamic response associated with HFOs that co-occur with IEDs better identifies known epileptic tissue than HFOs that occur independently.

2.
Epilepsia ; 65(8): 2295-2307, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38845414

RESUMO

OBJECTIVE: Temporal lobe epilepsy (TLE) has a high probability of becoming drug resistant and is frequently considered for surgical intervention. However, 30% of TLE cases have nonlesional magnetic resonance imaging (MRI) scans, which is associated with worse surgical outcomes. Characterizing interactions between temporal and extratemporal structures in these patients may help understand these poor outcomes. Simultaneous intracranial electroencephalography-functional MRI (iEEG-fMRI) can measure the hemodynamic changes associated with interictal epileptiform discharges (IEDs) recorded directly from the brain. This study was designed to characterize the whole brain patterns of IED-associated fMRI activation recorded exclusively from the mesial temporal lobes of patients with nonlesional TLE. METHODS: Eighteen patients with nonlesional TLE undergoing iEEG monitoring with mesial temporal IEDs underwent simultaneous iEEG-fMRI at 3 T. IEDs were marked, and statistically significant clusters of fMRI activation were identified. The locations of IED-associated fMRI activation for each patient were determined, and patients were grouped based on the location and pattern of fMRI activation. RESULTS: Two patterns of IED-associated fMRI activation emerged: primarily localized (n = 7), where activation was primarily located within the ipsilateral temporal lobe, and primarily diffuse (n = 11), where widespread bilateral extratemporal activation was detected. The primarily diffuse group reported significantly fewer focal to bilateral tonic-clonic seizures and had better postsurgical outcomes. SIGNIFICANCE: Simultaneous iEEG-fMRI can measure the hemodynamic changes associated with focal IEDs not visible on scalp EEG, such as those arising from the mesial temporal lobe. Significant fMRI activation associated with these IEDs was observed in all patients. Two distinct patterns of IED-associated activation were seen: primarily localized to the ipsilateral temporal lobe and more widespread, bilateral activation. Patients with widespread IED associated-activation had fewer focal to bilateral tonic-clonic seizures and better postsurgical outcome, which may suggest a neuroprotective mechanism limiting the spread of ictal events.


Assuntos
Eletrocorticografia , Eletroencefalografia , Epilepsia do Lobo Temporal , Imageamento por Ressonância Magnética , Lobo Temporal , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Epilepsia do Lobo Temporal/cirurgia , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/fisiopatologia , Feminino , Adulto , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/fisiopatologia , Lobo Temporal/cirurgia , Pessoa de Meia-Idade , Adulto Jovem , Eletroencefalografia/métodos , Eletrocorticografia/métodos , Oxigênio/sangue , Adolescente , Mapeamento Encefálico/métodos
3.
Brain ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38723175

RESUMO

Various subjective and objective methods have been proposed to identify which interictal epileptiform discharge (IED)-related EEG-fMRI results are more likely to delineate seizure generating tissue in patients with drug-resistant focal epilepsy for the purposes of surgical planning. In this intracranial EEG-fMRI study, we evaluated the utility of these methods to localize clinically relevant regions pre-operatively and compared the extent of resection of these areas to post-operative outcome. Seventy patients admitted for intracranial video-EEG monitoring were recruited for a simultaneous intracranial EEG-fMRI study. For all analyses of blood oxygen level-dependent responses associated with IEDs, an experienced epileptologist identified the most Clinically Relevant brain activation cluster using available clinical information. The Maximum cluster (the cluster with the highest z-score) was also identified for all analyses and assigned to one of three confidence levels (low, medium, or high) based on the difference of the peak z-scores between the Maximum and Second Maximum cluster (the cluster with the second highest peak z-value). The distance was measured and compared between the peak voxel of the aforementioned clusters and the electrode contacts where the interictal discharge and seizure onset were recorded. In patients who subsequently underwent epilepsy surgery, the spatial concordance between the aforementioned clusters and the area of resection was determined and compared to post-operative outcome. We evaluated 106 different IEDs in 70 patients. Both subjective (identification of the Clinically Relevant cluster) and objective (Maximum cluster much more significant than the second maximum cluster) methods of culling non-localizing EEG-fMRI activation maps increased the spatial concordance between these clusters and the corresponding IED or seizure onset zone contacts. However, only the objective methods of identifying medium and high confidence maps resulted in a significant association between resection of the peak voxel of the Maximum cluster and post-operative outcome. Resection of this area was associated with good post-operative outcomes but was not sufficient for seizure freedom. On the other hand, we found that failure to resect the medium and high confidence Maximum clusters was associated with a poor post-surgical outcome (negative predictive value = 1.0, sensitivity = 1.0). Objective methods to identify higher confidence EEG-fMRI results are needed to localize areas necessary for good post-operative outcomes. However, resection of the peak voxel within higher confidence Maximum clusters is not sufficient for good outcomes. Conversely, failure to resect the peak voxel in these clusters is associated with a poor post-surgical outcome.

4.
Epilepsia ; 62(5): 1105-1118, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33782964

RESUMO

OBJECTIVE: Scalp electroencephalographic (EEG)-functional magnetic resonance imaging (fMRI) studies suggest that the maximum blood oxygen level-dependent (BOLD) response to an interictal epileptiform discharge (IED) identifies the area of IED generation. However, the maximum BOLD response has also been reported in distant, seemingly irrelevant areas. Given the poor postoperative outcomes associated with extra-temporal lobe epilepsy, we hypothesized this finding is more common when analyzing extratemporal IEDs as compared to temporal IEDs. We further hypothesized that a subjective, holistic assessment of other significant BOLD clusters to identify the most clinically relevant cluster could be used to overcome this limitation and therefore better identify the likely origin of an IED. Specifically, we also considered the second maximum cluster and the cluster closest to the electrode contacts where the IED was observed. METHODS: Maps of significant IED-related BOLD activation were generated for 48 different IEDs recorded from 33 patients who underwent intracranial EEG-fMRI. The locations of the maximum, second maximum, and closest clusters were identified for each IED. An epileptologist, blinded to these cluster assignments, selected the most clinically relevant BOLD cluster, taking into account all available clinical information. The distances between these BOLD clusters and their corresponding IEDs were then measured. RESULTS: The most clinically relevant cluster was the maximum cluster for 56% (27/48) of IEDs, the second maximum cluster for 13% (6/48) of IEDs, and the closest cluster for 31% (15/48) of IEDs. The maximum clusters were closer to IED contacts for temporal than for extratemporal IEDs (p = .022), whereas the most clinically relevant clusters were not significantly different (p = .056). SIGNIFICANCE: The maximum BOLD response to IEDs may not always be the most indicative of IED origin. We propose that available clinical information should be used in conjunction with EEG-fMRI data to identify a BOLD cluster representative of the IED origin.


Assuntos
Mapeamento Encefálico/métodos , Epilepsia Resistente a Medicamentos/fisiopatologia , Eletrocorticografia/métodos , Epilepsias Parciais/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Adulto , Feminino , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Masculino , Pessoa de Meia-Idade , Processamento de Sinais Assistido por Computador
5.
Neurology ; 95(12): e1694-e1705, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32675079

RESUMO

OBJECTIVE: Since the strongest risk factor for sudden unexpected death in epilepsy (SUDEP) is frequent bilateral tonic-clonic seizures (BTCS), our aim was to determine whether postictal hypoperfusion in brainstem respiratory centers (BRCs) is more common following tonic-clonic seizures. METHODS: We studied 21 patients with focal epilepsies who underwent perfusion imaging with arterial spin labeling MRI. Subtraction maps of cerebral blood flow were obtained from the postictal and baseline scans. We identified 6 regions of interest in the brainstem that contain key BRCs. Patients were considered to have postictal BRC hypoperfusion if any of the 6 regions of interest were significantly hypoperfused. RESULTS: All 6 patients who experienced BTCS during the study had significant clusters of postictal hypoperfusion in BRCs compared to 7 who had focal impaired awareness seizures (7/15). The association between seizure type studied and the presence of BRC hypoperfusion was significant. Duration of epilepsy and frequency of BTCS were not associated with postictal brainstem hypoperfusion despite also being associated with risk for SUDEP. CONCLUSION: Postictal hypoperfusion in brainstem respiratory centers occurs more often following BTCS than other seizure types, providing a possible explanation for the increased risk of SUDEP in patients who regularly experience BTCS.


Assuntos
Tronco Encefálico/irrigação sanguínea , Convulsões/complicações , Morte Súbita Inesperada na Epilepsia/etiologia , Adulto , Tronco Encefálico/diagnóstico por imagem , Circulação Cerebrovascular/fisiologia , Epilepsias Parciais/complicações , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Neuroimagem/métodos , Imagem de Perfusão/métodos , Fatores de Risco , Adulto Jovem
6.
PLoS One ; 14(2): e0211906, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30735529

RESUMO

BACKGROUND: Many patients with primary biliary cholangitis (PBC) experience non-hepatic symptoms that are possibly linked to altered interoception, the sense of the body's internal state. We used magnetic resonance imaging (MRI) to determine if PBC patients exhibit structural and functional changes of the thalamus and insula, brain regions that process signals related to interoception. METHODS: Fifteen PBC patients with mild disease and 17 controls underwent 3 Tesla T1-weighted MRI, resting-state functional MRI, and quantitative susceptibility mapping (QSM), to measure thalamic and insular volume, neuronal activity and iron deposition, respectively. Group differences were assessed using analysis of covariance, and stepwise linear regression was used to determine the predictive power of clinical indicators of disease. RESULTS: PBC patients exhibited reduced thalamic volume (p < 0.01), and ursodeoxycholic acid (UDCA) non-responders exhibited lower left thalamus activity (p = 0.05). PBC patients also exhibited reduced anterior insula activity (p = 0.012), and liver stiffness positively correlated with MRI indicators of anterior insula iron deposition (p < 0.02). CONCLUSIONS: PBC affects structure and function of brain regions critically important to interoception. Moreover, these brain changes occur in patients with early, milder disease and thus may potentially be reversible.


Assuntos
Córtex Cerebral/diagnóstico por imagem , Ferro/metabolismo , Cirrose Hepática Biliar/diagnóstico por imagem , Fígado/diagnóstico por imagem , Tálamo/diagnóstico por imagem , Adulto , Mapeamento Encefálico , Estudos de Casos e Controles , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiopatologia , Colagogos e Coleréticos/uso terapêutico , Feminino , Humanos , Interocepção/efeitos dos fármacos , Interocepção/fisiologia , Modelos Lineares , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/fisiopatologia , Cirrose Hepática Biliar/tratamento farmacológico , Cirrose Hepática Biliar/metabolismo , Cirrose Hepática Biliar/fisiopatologia , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Tamanho do Órgão , Índice de Gravidade de Doença , Tálamo/efeitos dos fármacos , Tálamo/metabolismo , Tálamo/fisiopatologia , Ácido Ursodesoxicólico/uso terapêutico
7.
Clin Transl Gastroenterol ; 9(7): 169, 2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29977030

RESUMO

INTRODUCTION: Behavioral symptoms are commonly reported by patients with primary biliary cholangitis (PBC). In other patient populations, symptoms are commonly associated with hippocampal volume reduction linked to neuroinflammation (inferred from regional iron deposition), as demonstrated by magnetic resonance imaging (MRI). We hypothesized that PBC patients would exhibit reduced volume and increased iron deposition of the hippocampus. METHODS: Seventeen female non-cirrhotic PBC patients and 17 age/gender-matched controls underwent 3-Tesla T1-weighted MRI and quantitative susceptibility mapping (QSM; an indicator of iron deposition). The hippocampus and its subfields were segmented from T1 images using Freesurfer, and susceptibility of the whole hippocampus was calculated from QSM images. Volume and susceptibility were compared between groups, and associations with PBC-40 score and disease indicators (years since diagnosis, Fibroscan value, alkaline phosphatase level, clinical response to ursodeoxycholic acid (UDCA)) were investigated. RESULTS: PBC patients exhibited significantly reduced hippocampal volume (p = 0.023) and increased susceptibility (p = 0.048). Subfield volumes were reduced for the subiculum, molecular layer, granule cell layer of the dentate gyrus and CA4 (p < 0.05). Fibroscan value was significantly correlated with PBC-40 (Spearman's rho = 0.499; p = 0.041) and disease duration (Spearman's rho = 0.568; p = 0.017). DISCUSSION: Our findings suggest hippocampal changes occur early in the disease course of PBC, similar in magnitude to those observed in major depressive disorder and neurodegenerative diseases. TRANSLATIONAL IMPACT: Clinical management of PBC could include early interventional strategies that promote hippocampal neurogenesis that may beneficially impact behavioral symptoms and improve quality of life.


Assuntos
Colangite/diagnóstico por imagem , Colangite/patologia , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Imageamento por Ressonância Magnética , Adulto , Idoso , Colangite/psicologia , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/patologia , Depressão/etiologia , Depressão/patologia , Feminino , Hipocampo/metabolismo , Humanos , Ferro/metabolismo , Pessoa de Meia-Idade , Qualidade de Vida
8.
Clin Transl Gastroenterol ; 8(7): e107, 2017 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-28749455

RESUMO

OBJECTIVES: Fatigue, itch, depressed mood, and cognitive impairment significantly impact the quality of life of many patients with primary biliary cholangitis (PBC). Previous neuroimaging studies of non-hepatic diseases suggest that these symptoms are often associated with dysfunction of deep gray matter brain regions. We used resting-state functional magnetic resonance imaging (rsfMRI) to determine whether PBC patients exhibit altered functional connections of deep gray matter. METHODS: Twenty female non-cirrhotic PBC patients and 21 age/gender-matched controls underwent rsfMRI. Resting-state functional connectivity (rsFC) of deep gray matter brain structures (putamen, thalamus, amygdala, hippocampus) was compared between groups. Fatigue, itch, mood, cognitive performance, and clinical response to ursodeoxycholic acid (UDCA) were assessed, and their association with rsFC was determined. RESULTS: Relative to controls, PBC patients exhibited significantly increased rsFC between the putamen, thalamus, amygdala, and hippocampus, as well as with frontal and parietal regions. Reduced rsFC of the putamen and hippocampus with motor and sensory regions of the brain were also observed. Fatigue, itch, complete response to UDCA, and verbal working memory performance were also associated with altered rsFC of deep gray matter. These rsFC changes were independent of biochemical disease severity. CONCLUSIONS: PBC patients have objective evidence of altered rsFC of the brain's deep gray matter that is in part linked to fatigue severity, itch, response to UDCA therapy, and cognitive performance. These results may guide future approaches to define how PBC leads to altered brain connectivity and provide insight into novel targets for treating PBC-associated brain dysfunction and behavioral symptoms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA