Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Vision Res ; 222: 108456, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38991466

RESUMO

Although biomechanical changes of the trabecular meshwork (TM) are important to the pathogenesis of glucocorticoids-induced ocular hypertension (GC-OHT), there is a knowledge gap in the underlying molecular mechanisms of the development of it. In this study, we performed intravitreal triamcinolone injection (IVTA) in one eye of 3 rhesus macaques. Following IVTA, we assessed TM stiffness using atomic force microscopy and investigated changes in proteomic and miRNA expression profiles. One of 3 macaques developed GC-OHT with a difference in intraocular pressure of 4.2 mmHg and a stiffer TM with a mean increase in elastic moduli of 0.60 kPa versus the non-injected control eye. In the IVTA-treated eyes, proteins associated with extracellular matrix remodeling, cytoskeletal rearrangement, and mitochondrial oxidoreductation were significantly upregulated. The significantly upregulated miR-29b and downregulated miR-335-5p post-IVTA supported the role of oxidative stress and mitophagy in the GC-mediated biomechanical changes in TM, respectively. The significant upregulation of miR-15/16 cluster post-IVTA may indicate a resultant TM cell apoptosis contributing to the increase in outflow resistance. Despite the small sample size, these results expand our knowledge of GC-mediated responses in the TM and furthermore, may help explain steroid responsiveness in clinical settings.

2.
Nat Commun ; 15(1): 5658, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969634

RESUMO

Understanding and treating human diseases require valid animal models. Leveraging the genetic diversity in rhesus macaque populations across eight primate centers in the United States, we conduct targeted-sequencing on 1845 individuals for 374 genes linked to inherited human retinal and neurodevelopmental diseases. We identify over 47,000 single nucleotide variants, a substantial proportion of which are shared with human populations. By combining rhesus and human allele frequencies with established variant prediction methods, we develop a machine learning-based score that outperforms established methods in predicting missense variant pathogenicity. Remarkably, we find a marked number of loss-of-function variants and putative deleterious variants, which may lead to the development of rhesus disease models. Through phenotyping of macaques carrying a pathogenic OPA1:p.A8S variant, we identify a genetic model of autosomal dominant optic atrophy. Finally, we present a public website housing variant and genotype data from over two thousand rhesus macaques.


Assuntos
Modelos Animais de Doenças , Variação Genética , Macaca mulatta , Animais , Macaca mulatta/genética , Humanos , Frequência do Gene , Atrofia Óptica Autossômica Dominante/genética , Polimorfismo de Nucleotídeo Único , Fenótipo , Aprendizado de Máquina , Genótipo , Mutação de Sentido Incorreto
3.
Invest Ophthalmol Vis Sci ; 64(12): 44, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37773500

RESUMO

Purpose: Choroidal vascular changes occur with normal aging and age-related macular degeneration (AMD). Here, we evaluate choroidal thickness and vascularity in aged rhesus macaques to better understand the choroid's role in this nonhuman primate model of AMD. Methods: We analyzed optical coherence tomography (OCT) images of 244 eyes from 122 rhesus macaques (aged 4-32 years) to measure choroidal thickness (CT) and choroidal vascularity index (CVI). Drusen number, size, and volume were measured by semiautomated annotation and segmentation of OCT images. We performed regression analyses to determine any association of CT or CVI with age, sex, and axial length and to determine if the presence and volume of soft drusen impacted these choroidal parameters. Results: In rhesus macaques, subfoveal CT decreased with age at 3.2 µm/y (R2 = 0.481, P < 0.001), while CVI decreased at 0.66% per year (R2 = 0.257, P < 0.001). Eyes with soft drusen exhibited thicker choroid (179.9 ± 17.5 µm vs. 162.0 ± 27.9 µm, P < 0.001) and higher CVI (0.612 ± 0.051 vs. 0.577 ± 0.093, P = 0.005) than age-matched control animals. Neither CT or CVI appeared to be associated with drusen number, size, or volume in this cohort. However, some drusen in macaques were associated with underlying choroidal vessel enlargement resembling pachydrusen in human patients with AMD. Conclusions: Changes in the choroidal vasculature in rhesus macaques resemble choroidal changes in human aging, but eyes with drusen exhibit choroidal thickening, increased vascularity, and phenotypic characteristics of pachydrusen observed in some patients with AMD.


Assuntos
Degeneração Macular , Drusas Retinianas , Humanos , Animais , Macaca mulatta , Estudos Retrospectivos , Retina , Corioide/irrigação sanguínea , Envelhecimento , Tomografia de Coerência Óptica/métodos
4.
Clin Ophthalmol ; 17: 657-665, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36880020

RESUMO

Purpose: To evaluate real-world experience using intravitreal brolucizumab (IVBr), alone or in combination with aflibercept, in eyes with neovascular age-related macular degeneration (nAMD) treated previously with other inhibitors of VEGF (anti-VEGF). Methods: This was a retrospective study of all eyes with nAMD treated with IVBr on a treat-and-extend protocol at a single center. Best-corrected visual acuity (BCVA), optical coherence tomography (OCT) at baseline and final visit, and drug-related adverse events were analyzed. Eyes with recurrent macular fluid on IVBr every 8 weeks were treated with a combination therapy alternating between IVBr and aflibercept every month. Results: Among 52 eyes (40 patients) on IVBr, all had been previously treated with other anti-VEGF therapy, with 73% having persistent macular fluid. After a mean follow-up of 46.2±27.4 weeks on IVBr, the mean treatment interval for intravitreal therapy increased to 8.8±2.1 weeks on IVBr from a baseline of 6.1±3.1 weeks (p<0.001). Macular fluid decreased and BCVA was stable/improved in 61.5% of eyes on IVBr. Ten eyes with increased macular fluid on IVBr monotherapy when extended to every 8 weeks were treated with combination therapy alternating between IVBr and aflibercept every 4 weeks. In these eyes, 80% had improved macular fluid on OCT and 70% stable or improved BCVA after a median follow-up of 53 weeks on combination therapy. Mild intraocular inflammation developed in four eyes, all occurring on IVBr monotherapy, and none had associated vision loss. Conclusion: In the real world, IVBr used to treat eyes with nAMD previously treated with other anti-VEGF therapies appears to be well tolerated and associated with an improvement in macular fluid, stabilization of BCVA, and/or increase in intravitreal treatment interval. Combination therapy alternating between IVBr and aflibercept monthly appears to be well tolerated and can be considered for eyes with macular fluid on IVBr every 8 weeks.

5.
BMC Biol ; 21(1): 22, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737727

RESUMO

BACKGROUND: Microphthalmia, anophthalmia, and coloboma (MAC) spectrum disease encompasses a group of eye malformations which play a role in childhood visual impairment. Although the predominant cause of eye malformations is known to be heritable in nature, with 80% of cases displaying loss-of-function mutations in the ocular developmental genes OTX2 or SOX2, the genetic abnormalities underlying the remaining cases of MAC are incompletely understood. This study intended to identify the novel genes and pathways required for early eye development. Additionally, pathways involved in eye formation during embryogenesis are also incompletely understood. This study aims to identify the novel genes and pathways required for early eye development through systematic forward screening of the mammalian genome. RESULTS: Query of the International Mouse Phenotyping Consortium (IMPC) database (data release 17.0, August 01, 2022) identified 74 unique knockout lines (genes) with genetically associated eye defects in mouse embryos. The vast majority of eye abnormalities were small or absent eyes, findings most relevant to MAC spectrum disease in humans. A literature search showed that 27 of the 74 lines had previously published knockout mouse models, of which only 15 had ocular defects identified in the original publications. These 12 previously published gene knockouts with no reported ocular abnormalities and the 47 unpublished knockouts with ocular abnormalities identified by the IMPC represent 59 genes not previously associated with early eye development in mice. Of these 59, we identified 19 genes with a reported human eye phenotype. Overall, mining of the IMPC data yielded 40 previously unimplicated genes linked to mammalian eye development. Bioinformatic analysis showed that several of the IMPC genes colocalized to several protein anabolic and pluripotency pathways in early eye development. Of note, our analysis suggests that the serine-glycine pathway producing glycine, a mitochondrial one-carbon donator to folate one-carbon metabolism (FOCM), is essential for eye formation. CONCLUSIONS: Using genome-wide phenotype screening of single-gene knockout mouse lines, STRING analysis, and bioinformatic methods, this study identified genes heretofore unassociated with MAC phenotypes providing models to research novel molecular and cellular mechanisms involved in eye development. These findings have the potential to hasten the diagnosis and treatment of this congenital blinding disease.


Assuntos
Anoftalmia , Coloboma , Anormalidades do Olho , Microftalmia , Humanos , Camundongos , Animais , Anormalidades do Olho/genética , Anoftalmia/genética , Microftalmia/genética , Coloboma/genética , Camundongos Knockout , Desenvolvimento Embrionário/genética , Fenótipo , Olho , Mamíferos
6.
Invest Ophthalmol Vis Sci ; 64(1): 18, 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36689233

RESUMO

Purpose: Foveoschisis involves the pathologic splitting of retinal layers at the fovea, which may occur congenitally in X-linked retinoschisis (XLRS) or as an acquired complication of myopia. XLRS is attributed to functional loss of the retinal adhesion protein retinoschisin 1 (RS1), but the pathophysiology of myopic foveoschisis is unclear due to the lack of animal models. Here, we characterized a novel nonhuman primate model of myopic foveoschisis through clinical examination and multimodal imaging followed by morphologic, cellular, and transcriptional profiling of retinal tissues and genetic analysis. Methods: We identified a rhesus macaque with behavioral and anatomic features of myopic foveoschisis, and monitored disease progression over 14 months by fundus photography, fluorescein angiography, and optical coherence tomography (OCT). After necropsy, we evaluated anatomic and cellular changes by immunohistochemistry and transcriptomic changes using single-nuclei RNA-sequencing (snRNA-seq). Finally, we performed Sanger and whole exome sequencing with focus on the RS1 gene. Results: Affected eyes demonstrated posterior hyaloid traction and progressive splitting of the outer plexiform layer on OCT. Immunohistochemistry showed increased GFAP expression in Müller glia and loss of ramified Iba-1+ microglia, suggesting macro- and microglial activation with minimal photoreceptor alterations. SnRNA-seq revealed gene expression changes predominantly in cones and retinal ganglion cells involving chromatin modification, suggestive of cellular stress at the fovea. No defects in the RS1 gene or its expression were detected. Conclusions: This nonhuman primate model of foveoschisis reveals insights into how acquired myopic traction leads to phenotypically similar morphologic and cellular changes as congenital XLRS without alterations in RS1.


Assuntos
Miopia Degenerativa , Retinosquise , Animais , Macaca mulatta , Retina , Fóvea Central , Tomografia de Coerência Óptica
8.
Transl Vis Sci Technol ; 12(6): 13, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38752621

RESUMO

Purpose: Non-human primates (NHPs) are useful models for human retinal disease. Chromatic pupillometry has been proposed as a noninvasive method of identifying inherited retinal diseases (IRDs) in humans; however, standard protocols employ time-consuming dark adaptation. We utilized shortened and standard dark-adaptation protocols to compare pupillary light reflex characteristics following chromatic stimulation in rhesus macaques with achromatopsia to wild-type (WT) controls with normal retinal function. Methods: Nine rhesus macaques homozygous for the p.R656Q mutation (PDE6C HOMs) and nine WT controls were evaluated using chromatic pupillometry following 1-minute versus standard 20-minute dark adaptations. The following outcomes were measured and compared between groups: pupil constriction latency, peak constriction, pupil constriction time, and constriction velocity. Results: Pupil constriction latency was significantly longer in PDE6C HOMs with red-light (P = 0.0002) and blue-light (P = 0.04) stimulation versus WT controls. Peak constriction was significantly less in PDE6C HOMs with all light stimulation compared to WT controls (P < 0.0001). Pupil constriction time was significantly shorter in PDE6C HOMs versus WT controls with red-light (P = 0.04) and white-light (P = 0.003) stimulation. Pupil constriction velocity was significantly slower in PDE6C HOMs versus WT controls with red-light (P < 0.0001), blue-light (P < 0.0001), and white-light (P = 0.0002) stimulation. Dark adaptation time only significantly affected peak (P = 0.008) and time of pupil constriction (P = 0.02) following blue-light stimulation. Conclusions: Chromatic pupillometry following 1- and 20-minute dark adaptation is an effective tool for screening NHPs for achromatopsia. Translational Relevance: Rapid identification of NHPs with IRDs will provide animal research models to advance research and treatment of achromatopia in humans.


Assuntos
Defeitos da Visão Cromática , Adaptação à Escuridão , Modelos Animais de Doenças , Macaca mulatta , Reflexo Pupilar , Animais , Reflexo Pupilar/fisiologia , Adaptação à Escuridão/fisiologia , Defeitos da Visão Cromática/genética , Defeitos da Visão Cromática/fisiopatologia , Defeitos da Visão Cromática/diagnóstico , Pupila/fisiologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/genética , Masculino , Estimulação Luminosa , Feminino
9.
Sci Rep ; 12(1): 20791, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36456625

RESUMO

We searched a database of single-gene knockout (KO) mice produced by the International Mouse Phenotyping Consortium (IMPC) to identify candidate ciliopathy genes. We first screened for phenotypes in mouse lines with both ocular and renal or reproductive trait abnormalities. The STRING protein interaction tool was used to identify interactions between known cilia gene products and those encoded by the genes in individual knockout mouse strains in order to generate a list of "candidate ciliopathy genes." From this list, 32 genes encoded proteins predicted to interact with known ciliopathy proteins. Of these, 25 had no previously described roles in ciliary pathobiology. Histological and morphological evidence of phenotypes found in ciliopathies in knockout mouse lines are presented as examples (genes Abi2, Wdr62, Ap4e1, Dync1li1, and Prkab1). Phenotyping data and descriptions generated on IMPC mouse line are useful for mechanistic studies, target discovery, rare disease diagnosis, and preclinical therapeutic development trials. Here we demonstrate the effective use of the IMPC phenotype data to uncover genes with no previous role in ciliary biology, which may be clinically relevant for identification of novel disease genes implicated in ciliopathies.


Assuntos
Ciliopatias , Camundongos , Animais , Camundongos Knockout , Ciliopatias/genética , Técnicas de Inativação de Genes , Cílios/genética , Bases de Dados Factuais , Proteínas do Tecido Nervoso , Proteínas de Ciclo Celular
10.
Int J Mol Sci ; 23(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36555536

RESUMO

Previously, we developed a simple procedure of intracameral injection of silicone oil (SO) into mouse eyes and established the mouse SOHU (SO-induced ocular hypertension under-detected) glaucoma model with reversible intraocular pressure (IOP) elevation and significant glaucomatous neurodegeneration. Because the anatomy of the non-human primate (NHP) visual system closely resembles that of humans, it is the most likely to predict human responses to diseases and therapies. Here we tried to replicate the mouse SOHU glaucoma model in rhesus macaque monkeys. All six animals that we tested showed significant retinal ganglion cell (RGC) death, optic nerve (ON) degeneration, and visual functional deficits at both 3 and 6 months. In contrast to the mouse SOHU model, however, IOP changed dynamically in these animals, probably due to individual differences in ciliary body tolerance capability. Further optimization of this model is needed to achieve consistent IOP elevation without permanent damage of the ciliary body. The current form of the NHP SOHU model recapitulates the severe degeneration of acute human glaucoma, and is therefore suitable for assessing experimental therapies for neuroprotection and regeneration, and therefore for translating relevant findings into novel and effective treatments for patients with glaucoma and other neurodegenerations.


Assuntos
Glaucoma , Hipertensão Ocular , Humanos , Camundongos , Animais , Macaca mulatta , Óleos de Silicone , Glaucoma/metabolismo , Hipertensão Ocular/induzido quimicamente , Hipertensão Ocular/metabolismo , Pressão Intraocular , Modelos Animais de Doenças
11.
Invest Ophthalmol Vis Sci ; 63(12): 5, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36326727

RESUMO

Purpose: Uveal coloboma is a congenital eye malformation caused by failure of the optic fissure to close in early human development. Despite significant progress in identifying genes whose regulation is important for executing this closure, mutations are detected in a minority of cases using known gene panels, implying additional genetic complexity. We have previously shown knockdown of znf503 (the ortholog of mouse Zfp503) in zebrafish causes coloboma. Here we characterize Zfp503 knockout (KO) mice and evaluate transcriptomic profiling of mutant versus wild-type (WT) retinal pigment epithelium (RPE)/choroid. Methods: Zfp503 KO mice were generated by gene targeting using homologous recombination. Embryos were characterized grossly and histologically. Patterns and level of developmentally relevant proteins/genes were examined with immunostaining/in situ hybridization. The transcriptomic profile of E11.5 KO RPE/choroid was compared to that of WT. Results: Zfp503 is dynamically expressed in developing mouse eyes, and loss of its expression results in uveal coloboma. KO embryos exhibit altered mRNA levels and expression patterns of several key transcription factors involved in eye development, including Otx2, Mitf, Pax6, Pax2, Vax1, and Vax2, resulting in a failure to maintain the presumptive RPE, as evidenced by reduced melanin pigmentation and its differentiation into a neural retina-like lineage. Comparison of RNA sequencing data from WT and KO E11.5 embryos demonstrated reduced expression of melanin-related genes and significant overlap with genes known to be dynamically regulated at the optic fissure. Conclusions: These results demonstrate a critical role of Zfp503 in maintaining RPE fate and optic fissure closure.


Assuntos
Coloboma , Neuropeptídeos , Animais , Humanos , Camundongos , Coloboma/genética , Coloboma/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Melaninas/metabolismo , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Neuropeptídeos/genética , Retina/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Peixe-Zebra/genética
12.
Ophthalmic Surg Lasers Imaging Retina ; 53(10): 529-536, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36239679

RESUMO

BACKGROUND AND OBJECTIVE: To determine if age-related macular degeneration (AMD) status affects longitudinal retinal vessel changes. PATIENTS AND METHODS: Retrospective, cohort study of 125 eyes (75 patients) with AMD, following retinal vessel density (VD) and foveal avascular zone (FAZ) measurements using optical coherence tomography angiography (OCT-A) over 24 months. RESULTS: FAZ area (P < .001) and perimeter (P < .001) increased over 2 years, with no difference between nonexudative and exudative AMD (P = .134-.976). Eyes with geographic atrophy (GA) showed greater progressive VD loss (P = .023-.038), and greater increase in FAZ area (P = .044) and perimeter (P = .040) compared to eyes without GA. Neither baseline nor 2-year change in vascular parameters were associated with choroidal neovascularization (CNV) or GA incidence in nonexudative AMD, or anti-VEGF injection frequency in exudative AMD (P = .070-.952). CONCLUSION: AMD eyes with GA undergo more rapid loss of retinal vessel density and FAZ enlargement over 2 years, suggesting a relationship between the retinal vasculature and AMD pathophysiology. [Ophthalmic Surg Lasers Imaging Retina 2022;53:529-536.].


Assuntos
Atrofia Geográfica , Degeneração Macular , Estudos de Coortes , Angiofluoresceinografia/métodos , Humanos , Degeneração Macular/diagnóstico , Vasos Retinianos , Estudos Retrospectivos , Tomografia de Coerência Óptica/métodos
13.
Transl Vis Sci Technol ; 11(9): 23, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36156731

RESUMO

Purpose: To define the normal range of central corneal thickness (CCT) and corneal endothelial cell density (ECD) in rhesus macaques (Macaca mulatta) and the effects of age, body weight, sex, and intraocular pressure (IOP) on these parameters. Methods: Ophthalmic examinations were performed on 144 rhesus macaques without anterior segment pathology. The CCT was measured via ultrasound pachymetry (USP) and specular microscopy, and the ECD was semiautomatically and manually counted using specular microscopy. Rebound tonometry was used to measure IOP. Linear regression and mixed-effects linear regression models were used to evaluate the effects of age, body weight, sex, and IOP on CCT and ECD. Results: We included 98 females and 46 males with an age range of 0.2 to 29.4 years. The mean CCT by USP and specular microscopy were 483 ± 39 and 463 ± 33 µm, respectively, and were statistically different (P < 0.001). The ECDs were 2717 ± 423 and 2747 ± 438 cells/mm2 by semiautomated and manual analysis, respectively. Corneal endothelial degeneration was identified in one aged rhesus macaque. Conclusions: The mean USP and specular microscopy CCT values differed significantly, whereas the semiautomatic and manual ECD did not. The CCT was associated with the IOP and sex, whereas the ECD was associated with body weight and age (P < 0.05). As in humans, corneal disease in rhesus macaques is uncommon. Translational Relevance: Establishing reference values is fundamental to use rhesus macaques as a model for corneal disease or to identify toxicity in studies of ocular drugs or devices.


Assuntos
Córnea , Distrofias Hereditárias da Córnea , Adolescente , Adulto , Idoso , Animais , Peso Corporal , Criança , Pré-Escolar , Córnea/anatomia & histologia , Córnea/patologia , Distrofias Hereditárias da Córnea/patologia , Células Endoteliais , Feminino , Humanos , Lactente , Macaca mulatta , Masculino , Reprodutibilidade dos Testes , Adulto Jovem
14.
Am J Ophthalmol Case Rep ; 27: 101613, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35756836

RESUMO

Purpose: To illustrate the importance of systemic evaluation in retinal dystrophies through examples of Alstrom syndrome, Bardet Biedl syndrome, and Refsum disease. Observations: Detailed eye evaluations, including visual acuity, visual field, slit lamp examination, and indirect ophthalmoscopy were performed. Retinal imaging included fundus photography and spectral domain optical coherence tomography (SD-OCT). Functional testing of the retina was done using full field electroretinography (ffERG). In addition, molecular genetic testing was performed using a ciliopathy panel, a retinal dystrophy panel, and whole genome sequencing (WGS).We report three individuals who presented with vision concerns first to ophthalmology, noted to have retinal dystrophy, and then referred to genomic medicine for genetic testing. Additional evaluation led to suspicion of specific groups of systemic disorders and guided appropriate genetic testing. The first individual presented with retinal dystrophy, obesity, and short stature with no reported neurocognitive deficits. Genetic testing included a ciliopathy panel that was negative followed by WGS that identified biallelic variants in ALMS: a novel frame-shift pathogenic variant c.6525dupT (p.Gln2176Serfs*17) and a rare nonsense pathogenic variant c.2035C > T (p.Arg679Ter) consistent with Alstrom syndrome. The second individual presented with retinal dystrophy, central obesity, and mild neurocognitive deficits. A ciliopathy genetic testing panel identified a homozygous pathogenic variant in BBS7: c.389_390del (p.Asn130Thrfs*4), confirming the diagnosis of Bardet Biedl syndrome. The third individual presented with progressive vision loss due to retinitis pigmentosa, anosmia, hearing loss, and shortened metatarsals and digits. Genetic testing identified two variants in PHYH: c.375_375del (p.Glu126Argfs*2) a pathogenic variant and c.536A > G (p.His179Arg), a variant of uncertain significance (VUS), suggestive of Refsum disease. Additional biochemical testing revealed markedly elevated phytanic acid with a low concentration of pristanic acid and normal concentrations of very long-chain fatty acids (C22:0, C24:0, C26:0), a pattern consistent with a diagnosis of Refsum disease. Conclusions and importance: In individuals who present with retinal dystrophy to ophthalmologists, additional systemic manifestations such as sensorineural hearing loss, anosmia, or polydactyly, should be sought and a positive history or examination finding should prompt an immediate referral to a clinical geneticist for additional evaluation and appropriate genetic testing. This facilitates pre-test genetic counseling and allows for more accurate diagnosis, prognosis, and management of affected individuals along with better recurrence risk estimates for family members. Identification of an underlying etiology also enhances the understanding of the pathophysiology of disease and expands the genotypic and phenotypic spectrum. Ultimately, successful recognition of these diseases facilitates development of targeted therapies and surveillance of affected individuals.

15.
Dis Model Mech ; 15(7)2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35758026

RESUMO

Retinitis pigmentosa (RP), a retinal degenerative disease, is the leading cause of heritable blindness. Previously, we described that Arap1-/- mice develop a similar pattern of photoreceptor degeneration. Arap1 is an Arf-directed GTPase-activating protein shown to modulate actin cytoskeletal dynamics. Curiously, Arap1 expression was detected in Müller glia and retinal pigment epithelium (RPE), but not the photoreceptors themselves. In this study, we generated conditional knockout mice for Müller glia/RPE, Müller glia and RPE via targeting Rlbp1, Glast and Vmd2 promoters, respectively, to drive Cre recombinase expression to knock out Arap1. Vmd2-Cre Arap1tm1c/tm1c and Rlbp1-Cre Arap1tm1c/tm1c mice, but not Glast-Cre Arap1tm1c/tm1c mice, recapitulated the phenotype originally observed in germline Arap1-/- mice. Mass spectrometry analysis of human ARAP1 co-immunoprecipitation identified candidate binding partners of ARAP1, revealing potential interactants involved in phagocytosis, cytoskeletal composition, intracellular trafficking and endocytosis. Quantification of outer segment phagocytosis in vivo demonstrated a clear phagocytic defect in Arap1-/- mice compared to Arap1+/+ controls. We conclude that Arap1 expression in RPE is necessary for photoreceptor survival due to its indispensable function in RPE phagocytosis. This article has an associated First Person interview with the first author of the paper.


Assuntos
Degeneração Retiniana , Retinose Pigmentar , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Transporte/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Humanos , Camundongos , Camundongos Knockout , Fagocitose , Retina/metabolismo , Degeneração Retiniana/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Retinose Pigmentar/metabolismo
16.
Cell Prolif ; 55(4): e13198, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35165951

RESUMO

PURPOSE: To compare the timing and efficiency of the development of Macaca mulatta, a nonhuman primate (NHP), induced pluripotent stem cell (rhiPSC) derived retinal organoids to those derived from human embryonic stem cells (hESCs). RESULTS: Generation of retinal organoids was achieved from both human and several NHP pluripotent stem cell lines. All rhiPSC lines resulted in retinal differentiation with the formation of optic vesicle-like structures similar to what has been observed in hESC retinal organoids. NHP retinal organoids had laminated structure and were composed of mature retinal cell types including cone and rod photoreceptors. Single-cell RNA sequencing was conducted at two time points; this allowed identification of cell types and developmental trajectory characterization of the developing organoids. Important differences between rhesus and human cells were measured regarding the timing and efficiency of retinal organoid differentiation. While the culture of NHP-derived iPSCs is relatively difficult compared to that of human stem cells, the generation of retinal organoids from NHP iPSCs is feasible and may be less time-consuming due to an intrinsically faster timing of retinal differentiation. CONCLUSIONS: Retinal organoids produced from rhesus monkey iPSCs using established protocols differentiate through the stages of organoid development faster than those derived from human stem cells. The production of NHP retinal organoids may be advantageous to reduce experimental time for basic biology studies in retinogenesis as well as for preclinical trials in NHPs studying retinal allograft transplantation.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Animais , Diferenciação Celular/genética , Humanos , Macaca mulatta , Organoides , Retina/metabolismo
17.
J Med Primatol ; 51(2): 119-123, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34897697

RESUMO

This report describes the clinical and histological findings, genetic study, and treatment in a 1.3-year-old rhesus macaque with bilateral cataracts and unilateral secondary glaucoma. Intravitreal injection of gentamicin decreased the intraocular pressure from 56 to <2 mm Hg. A putative genetic cause of the cataracts was not identified.


Assuntos
Catarata , Glaucoma , Animais , Catarata/diagnóstico , Catarata/genética , Catarata/veterinária , Glaucoma/genética , Glaucoma/veterinária , Pressão Intraocular , Macaca mulatta/genética
18.
Exp Eye Res ; 212: 108754, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34506802

RESUMO

PURPOSE: To assess age-related changes in the rhesus macaque eye and evaluate them to corresponding human age-related eye disease. METHODS: Data from eye exams and imaging tests including intraocular pressure (IOP), lens thickness, axial length, and retinal optical coherence tomography (OCT) images were evaluated from 142 individuals and statistically analyzed for age-related changes. Quantitative autofluorescence (qAF) was measured as was the presence of macular lesions as related to age. RESULTS: Ages of the 142 rhesus macaques ranged from 0.7 to 29 years (mean = 16.4 years, stdev = 7.5 years). Anterior segment measurements such as IOP, lens thickness, and axial length were acquired. Advanced retinal imaging in the form of optical coherence tomography and qAF were obtained. Quantitative assessments were made and variations by age groups were analyzed to compare with established age-related changes in human eyes. Quantitative analysis of data revealed age-related increase in intraocular pressure (0.165 mm Hg per increase in year of age), ocular biometry (lens thickness 7.2 µm per increase in year of age; and axial length 52.8 µm per increase in year of age), and presence of macular lesions. Age-related changes in thicknesses of retinal layers on OCT were observed and quantified, showing decreased thickness of the retinal ganglion cell layer and inner nuclear layer, and increased thickness of photoreceptor outer segment and choroidal layers. Age was correlated with increased qAF by 1.021 autofluorescence units per increase in year of age. CONCLUSIONS: The rhesus macaque has age-related ocular changes similar to humans. IOP increases with age while retinal ganglion cell layer thickness decreases. Macular lesions develop in some aged animals. Our findings support the concept that rhesus macaques may be useful for the study of important age-related diseases such as glaucoma, macular diseases, and cone disorders, and for development of therapies for these diseases.


Assuntos
Envelhecimento , Oftalmopatias/diagnóstico , Células Ganglionares da Retina/patologia , Tomografia de Coerência Óptica/métodos , Animais , Biometria , Modelos Animais de Doenças , Oftalmopatias/fisiopatologia , Macaca mulatta
19.
Ann Transl Med ; 9(15): 1274, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34532411

RESUMO

BACKGROUND: Ceroid lipofuscinosis type 8 belongs to a heterogenous group of vision and life-threatening neurodegenerative diseases, neuronal ceroid lipofuscinosis (NCL). Effective therapy is limited to a single drug for treatment of ceroid lipofuscinosis type 2, necessitating animal disease models to facilitate further therapeutic development. Murine models are advantageous for therapeutic development due to easy genetic manipulation and rapid breeding, however appropriate genetic models need to be identified and characterized before being used for therapy testing. To date, murine models of ocular disease associated with ceroid lipofuscinosis type 8 have only been characterized in motor neuron degeneration mice. METHODS: Cln8-/- mice were produced by CRISPR/Cas9 genome editing through the International Mouse Phenotyping Consortium. Ophthalmic examination, optical coherence tomography, electroretinography, and ocular histology was performed on Cln8-/- mice and controls at 16 weeks of age. Quantification of all retinal layers, retinal pigmented epithelium, and the choriocapillaris was performed using images acquired with ocular coherence tomography and planimetry of histologic sections. Necropsy was performed to investigate concurrent systemic abnormalities. Clinical correlation with human patients with CLN8-associated retinopathy is provided. RESULTS: Retinal degeneration characterized by retinal pigment epithelium mottling, scattered drusen, and retinal vascular attenuation was noted in all Cln8-/- mice. Loss of inner and outer photoreceptor segment demarcation was noted on optical coherence tomography, with significant thinning of the whole retina (P=1e-9), outer nuclear layer (P=1e-9), and combined photoreceptor segments (P=1e-9). A global reduction in scotopic and photopic electroretinographic waveforms was noted in all Cln8-/- mice. Slight thickening of the inner plexiform layer (P=0.02) and inner nuclear layer (P=0.004), with significant thinning of the whole retina (P=0.03), outer nuclear layer (P=0.01), and outer photoreceptor segments (P=0.001) was appreciated on histologic sections. Scattered lipid vacuoles were noted in splenic red pulp of all Cln8-/- mice, though no gross systemic abnormalities were detected on necropsy. Retinal findings are consistent with those seen in patients with ceroid lipofuscinosis type 8. CONCLUSIONS: This study provides detailed clinical characterization of retinopathy in adult Cln8-/- mice. Findings suggest that Cln8-/- mice may provide a useful murine model for development of novel therapeutics needed for treating ocular disease in patients with ceroid lipofuscinosis type 8.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA