Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 416(14): 3373-3388, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38625560

RESUMO

A novel approach using diffusive gradients in thin films (DGT) with laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for two-dimensional mapping of elemental solute release at sub-picogram levels during aqueous corrosion of Al alloys is presented. Evaluation of different DGT gels with mixed micro-sized binding phases (polyacrylamide-Chelex-Metsorb, polyurethane (PU)-Chelex-Metsorb, PU-Chelex-Zr(OH)4) demonstrated the superior performance of PU gels due to their tear-proof handling, low shrinkage, and compliance with green chemistry. DGT devices containing PU-Chelex-Zr(OH)4 gels, which have not been characterized for Al sampling before, showed quantitative uptake of Al, Zn, and Cu solutes over time (t = 4-48 h) with higher Al capacity (ΓDGT = 6.25 µg cm-2) than different gels. Application of PU-Chelex-Zr(OH)4 gels on a high-strength Al-Cu alloy (Al2219) exposed to NaCl (w = 1.5%, pH = 4.5, T = 21 °C) for 15 min in a novel piston-type configuration revealed reproducible patterns of Al and Zn co-solubilization with a spatial expansion ranging between 50 and 1000 µm. This observation, together with complementary solid-state data from secondary electron microscopy with energy-dispersive X-ray spectroscopy, showed the presence of localized pitting corrosion at the material surface. Detection limits for total solute masses of Al, Zn, and Cu were ≤0.72 pg, ≤8.38 pg, and ≤0.12 pg, respectively, for an area of 0.01 mm2, demonstrating the method's unique capability to localize and quantify corrosion processes at ultra-trace levels and high resolution. Our study advances the assessment of Al alloy degradation in aqueous environments, supporting the design of corrosion-resistant materials for fostering technological safety and sustainability.

2.
J Microsc ; 288(1): 10-15, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35916115

RESUMO

Convergent beam electron diffraction (CBED) was used to profile the thickness of aluminium alloys foils prepared by using the twinjet electropolishing method. The two-beam CBED condition was obtained by exciting the { 200 } $\{ {200} \}$ and { 111 } $\{ {111} \}$ aluminium diffracted g-vector. The aluminium alloy foil thicknesses were calculated at different distances from the sample hole edge. In areas where only one Kossel-Möllenstedt (K-M) minima fringe was obtained, the thickness was determined by matching the experimental with simulated convergent beam diffraction patterns. In areas far away from the sample edge, the thickness of foils was high enough to generate at least two (K-M) minima fringes, required for linear regression fitting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA