Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Huntingtons Dis ; 12(4): 315-333, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38108356

RESUMO

BACKGROUND: Huntington's disease (HD) is a genetic neurodegenerative disease caused by trinucleotide repeat CAG expansions in the human HTT gene. Early onset juvenile HD (JHD) in children is the most severe form of the disease caused by high CAG repeat numbers of the HTT gene. OBJECTIVE: To gain understanding of human HD mechanisms hypothesized to involve dysregulated proteomes of brain regions that regulate motor and cognitive functions, this study analyzed the proteomes of human JHD cortex and putamen brain regions compared to age-matched controls. METHODS: JHD and age-matched control brain tissues were assessed for CAG repeat numbers of HTT by PCR. Human brain JHD brain cortex regions of BA4 and BA6 with the putamen region (n = 5) were analyzed by global proteomics, compared to age-matched controls (n = 7). Protein interaction pathways were assessed by gene ontology (GO), STRING-db, and KEGG bioinformatics. RESULTS: JHD brain tissues were heterozygous for one mutant HTT allele containing 60 to 120 CAG repeats, and one normal HTT allele with 10 to 19 CAG repeats. Proteomics data for JHD brain regions showed dysregulated mitochondrial energy pathways and changes in synaptic systems including peptide neurotransmitters. JHD compared to control proteomes of cortex and putamen displayed (a) proteins present only in JHD, (b) proteins absent in JHD, and (c) proteins that were downregulated or upregulated. CONCLUSIONS: Human JHD brain cortex and putamen regions display significant dysregulation of proteomes representing deficits in mitochondrial and synaptic neurotransmission functions. These findings advance understanding of JHD brain molecular mechanisms associated with HD disabilities.


Assuntos
Doença de Huntington , Doenças Neurodegenerativas , Neuropeptídeos , Criança , Humanos , Putamen , Proteoma , Doença de Huntington/genética , Encéfalo
2.
Artigo em Inglês | MEDLINE | ID: mdl-38125374

RESUMO

Tau propagation, pathogenesis, and neurotoxicity are hallmarks of neurodegenerative diseases that result in cognitive impairment. Tau accumulates in Alzheimer's disease (AD), frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17), chronic traumatic encephalopathy (CTE), progressive supranuclear palsy, and related tauopathies. Knowledge of the mechanisms for tau propagation in neurodegeneration is necessary for understanding the development of dementia. Exosomes, known as extracellular vesicles (EVs), have emerged as participants in promoting tau propagation. Recent findings show that EVs generated by neurons expressing familial mutations of tauopathies of FTDP-17 (P301L and V337M) (mTau) and presenilin (A246E) (mPS1) in AD induce tau propagation and accumulation after injection into rodent brain. To gain knowledge of the proteome cargoes of the mTau and mPS1 EVs that promote tau pathogenesis, this review compares the proteomes of these EVs, which results in important new questions concerning EV mechanisms of tau pathogenesis. Proteomics data show that EVs produced by mTau- and mPS1-expressing iPSC neurons share proteins involved in exocytosis and vesicle secretion and, notably, these EVs also possess differences in protein components of vesicle-mediated transport, extracellular functions, and cell adhesion. It will be important for future studies to gain an understanding of the breadth of familial genetic mutations of tau, presenilin, and other genes in promoting EV initiation of tau propagation and pathogenesis. Furthermore, elucidation of EV cargo components that mediate tau propagation will have potential as biomarkers and therapeutic strategies to ameliorate dementia of tauopathies.

3.
Biochemistry ; 62(15): 2289-2300, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37459182

RESUMO

The biological and pathological functions of cathepsin B occur in acidic lysosomes and at the neutral pH of cytosol, nuclei, and extracellular locations. Importantly, cathepsin B displays different substrate cleavage properties at acidic pH compared to neutral pH conditions. It is, therefore, desirable to develop specific substrates for cathepsin B that measure its activity over broad pH ranges. Current substrates used to monitor cathepsin B activity consist of Z-Phe-Arg-AMC and Z-Arg-Arg-AMC, but they lack specificity since they are cleaved by other cysteine cathepsins. Furthermore, Z-Arg-Arg-AMC monitors cathepsin B activity at neutral pH and displays minimal activity at acidic pH. Therefore, the purpose of this study was to design and validate specific fluorogenic peptide substrates that can monitor cathepsin B activity over a broad pH range from acidic to neutral pH conditions. In-depth cleavage properties of cathepsin B were compared to those of the cysteine cathepsins K, L, S, V, and X via multiplex substrate profiling by mass spectrometry at pH 4.6 and pH 7.2. Analysis of the cleavage preferences predicted the tripeptide Z-Nle-Lys-Arg-AMC as a preferred substrate for cathepsin B. Significantly, Z-Nle-Lys-Arg-AMC displayed the advantageous properties of measuring high cathepsin B specific activity over acidic to neutral pHs and was specifically cleaved by cathepsin B over the other cysteine cathepsins. Z-Nle-Lys-Arg-AMC specifically monitored cathepsin B activity in neuronal and glial cells which were consistent with relative abundances of cathepsin B protein. These findings validate Z-Nle-Lys-Arg-AMC as a novel substrate that specifically monitors cathepsin B activity over a broad pH range.


Assuntos
Catepsina B , Catepsinas , Catepsina B/metabolismo , Catepsinas/metabolismo , Cisteína , Endopeptidases/metabolismo , Lisossomos/metabolismo , Peptídeos , Especificidade por Substrato
4.
ACS Omega ; 7(29): 25346-25352, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35910167

RESUMO

Dysregulation of cathepsin B, which involves the translocation of the enzyme from acidic pH lysosomes to the neutral pH cytosol, followed by the initiation of cell death and inflammation, occurs in numerous brain disorders. The wide difference in the acidic pH (4.6) of lysosomes compared to the neutral pH (7.2) of the cytosol suggests that screening at different pH conditions may identify pH-selective modulators of cathepsin B. Therefore, a collection of pure marine and plant natural product (NP) compounds, with synthetic compounds, was screened at pH 4.6 and pH 7.2 in cathepsin B assays, which led to the identification of GER-12 (Crossbyanol B) and GER-24 ((7Z,9Z,12Z)-octadeca-7,9,12-trien-5-ynoic acid) marine NP inhibitors at acidic pH but not at neutral pH. GER-12 was effective for the reversible inhibition of cathepsin B, with an IC50 of 3 µM. GER-24 had an IC50 of 16 µM and was found to be an irreversible inhibitor. These results show that NP screening at distinct biological pH conditions can lead to the identification of pH-selective cathepsin B modulators. These findings suggest that screening efforts for molecular probes and drug discovery may consider the biological pH environment of the target in the disease process.

5.
ACS Chem Neurosci ; 13(2): 245-256, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34986304

RESUMO

Neuropeptides, functioning as peptide neurotransmitters and hormones, are generated from proneuropeptide precursors by proteolytic processing at dibasic residue sites (i.e., KR, RK, KK, RR). The cysteine proteases cathepsin L and cathepsin V, combined with the serine proteases proprotein convertases 1 and 2 (PC1/3 and PC2), participate in proneuropeptide processing to generate active neuropeptides. To compare the dibasic cleavage properties of these proteases, this study conducted global, unbiased substrate profiling of these processing proteases using a diverse peptide library in multiplex substrate profiling by mass spectrometry (MSP-MS) assays. MSP-MS utilizes a library of 228 14-mer peptides designed to contain all possible protease cleavage sites, including the dibasic residue sites of KR, RK, KK, and RR. The comprehensive MSP-MS analyses demonstrated that cathepsin L and cathepsin V cleave at the N-terminal side and between the dibasic residues (e.g., ↓K↓R, ↓R↓K, and K↓K), with a preference for hydrophobic residues at the P2 position of the cleavage site. In contrast, the serine proteases PC1/3 and PC2 displayed cleavage at the C-terminal side of dibasic residues of a few peptide substrates. Further analyses with a series of dipeptide-AMC and tripeptide-AMC substrates containing variant dibasic sites with hydrophobic P2 residues indicated the preferences of cathepsin L and cathepsin V to cleave between dibasic residue sites with preferences for flanking hydrophobic residues at the P2 position consisting of Leu, Trp, Phe, and Tyr. Such hydrophobic amino acids reside in numerous proneuropeptides such as pro-NPY and proenkephalin that are known to be processed by cathepsin L. Notably, cathepsin L displayed the highest specific activity that was 10-, 64-, and 1268-fold greater than cathepsin V, PC1/3, and PC2, respectively. Peptide-AMC substrates with dibasic residues confirmed that PC1/3 and P2 cleaved almost exclusively at the C-terminal side of dibasic residues. These data demonstrate distinct dibasic cleavage site properties and a broad range of proteolytic activities of cathepsin L and cathepsin V, compared to PC1/3 and PC2, which participate in producing neuropeptides for cell-cell communication.


Assuntos
Cisteína Proteases , Serina Proteases , Sequência de Aminoácidos , Catepsina L/metabolismo , Catepsinas , Processamento de Proteína Pós-Traducional , Serina Endopeptidases
6.
ACS Chem Biol ; 16(9): 1628-1643, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34416110

RESUMO

Cathepsin B is a cysteine protease that normally functions within acidic lysosomes for protein degradation, but in numerous human diseases, cathepsin B translocates to the cytosol having neutral pH where the enzyme activates inflammation and cell death. Cathepsin B is active at both the neutral pH 7.2 of the cytosol and the acidic pH 4.6 within lysosomes. We evaluated the hypothesis that cathepsin B may possess pH-dependent cleavage preferences that can be utilized for design of a selective neutral pH inhibitor by (1) analysis of differential cathepsin B cleavage profiles at neutral pH compared to acidic pH using multiplex substrate profiling by mass spectrometry (MSP-MS), (2) design of pH-selective peptide-7-amino-4-methylcoumarin (AMC) substrates, and (3) design and validation of Z-Arg-Lys-acyloxymethyl ketone (AOMK) as a selective neutral pH inhibitor. Cathepsin B displayed preferences for cleaving peptides with Arg in the P2 position at pH 7.2 and Glu in the P2 position at pH 4.6, represented by its primary dipeptidyl carboxypeptidase and modest endopeptidase activity. These properties led to design of the substrate Z-Arg-Lys-AMC having neutral pH selectivity, and its modification with the AOMK warhead to result in the inhibitor Z-Arg-Lys-AOMK. This irreversible inhibitor displays nanomolar potency with 100-fold selectivity for inhibition of cathepsin B at pH 7.2 compared to pH 4.6, shows specificity for cathepsin B over other cysteine cathepsins, and is cell permeable and inhibits intracellular cathepsin B. These findings demonstrate that cathepsin B possesses pH-dependent cleavage properties that can lead to development of a potent, neutral pH inhibitor of this enzyme.


Assuntos
Catepsina B/antagonistas & inibidores , Inibidores de Cisteína Proteinase/química , Citosol/metabolismo , Lisossomos/metabolismo , Peptídeos/química , Sequência de Aminoácidos , Sítios de Ligação , Catepsinas/metabolismo , Permeabilidade da Membrana Celular , Inibidores de Cisteína Proteinase/metabolismo , Endopeptidases/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Cinética , Espectrometria de Massas , Peptídeos/metabolismo , Ligação Proteica , Especificidade por Substrato
7.
ACS Omega ; 6(20): 13033-13056, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34056454

RESUMO

The accumulation and propagation of hyperphosphorylated tau (p-Tau) is a neuropathological hallmark occurring with neurodegeneration of Alzheimer's disease (AD). Extracellular vesicles, exosomes, have been shown to initiate tau propagation in the brain. Notably, exosomes from human-induced pluripotent stem cell (iPSC) neurons expressing the AD familial A246E mutant form of presenilin 1 (mPS1) are capable of inducing tau deposits in the mouse brain after in vivo injection. To gain insights into the exosome proteome cargo that participates in propagating tau pathology, this study conducted proteomic analysis of exosomes produced by human iPSC neurons expressing A246E mPS1. Significantly, mPS1 altered the profile of exosome cargo proteins to result in (1) proteins present only in mPS1 exosomes and not in controls, (2) the absence of proteins in the mPS1 exosomes which were present only in controls, and (3) shared proteins which were upregulated or downregulated in the mPS1 exosomes compared to controls. These results show that mPS1 dysregulates the proteome cargo of exosomes to result in the acquisition of proteins involved in the extracellular matrix and protease functions, deletion of proteins involved in RNA and protein translation systems along with proteasome and related functions, combined with the upregulation and downregulation of shared proteins, including the upregulation of amyloid precursor protein. Notably, mPS1 neuron-derived exosomes displayed altered profiles of protein phosphatases and kinases involved in regulating the status of p-tau. The dysregulation of exosome cargo proteins by mPS1 may be associated with the ability of mPS1 neuron-derived exosomes to propagate tau pathology.

8.
Biochim Biophys Acta Proteins Proteom ; 1868(8): 140428, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32305689

RESUMO

Investigations of Alzheimer's disease (AD), traumatic brain injury (TBI), and related brain disorders have provided extensive evidence for involvement of cathepsin B, a lysosomal cysteine protease, in mediating the behavioral deficits and neuropathology of these neurodegenerative diseases. This review integrates findings of cathepsin B regulation in clinical biomarker studies, animal model genetic and inhibitor evaluations, structural studies, and lysosomal cell biological mechanisms in AD, TBI, and related brain disorders. The results together indicate the role of cathepsin B in the behavioral deficits and neuropathology of these disorders. Lysosomal leakage occurs in AD and TBI, and related neurodegeneration, which leads to the hypothesis that cathepsin B is redistributed from the lysosome to the cytosol where it initiates cell death and inflammation processes associated with neurodegeneration. These results together implicate cathepsin B as a major contributor to these neuropathological changes and behavioral deficits. These findings support the investigation of cathepsin B as a potential drug target for therapeutic discovery and treatment of AD, TBI, and TBI-related brain disorders.


Assuntos
Doença de Alzheimer/enzimologia , Lesões Encefálicas Traumáticas/enzimologia , Encéfalo/enzimologia , Catepsina B/genética , Transtornos Neurocognitivos/enzimologia , Neurônios/enzimologia , Adulto , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/genética , Lesões Encefálicas Traumáticas/patologia , Catepsina B/antagonistas & inibidores , Catepsina B/metabolismo , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Criança , Citosol/efeitos dos fármacos , Citosol/enzimologia , Modelos Animais de Doenças , Feto , Regulação da Expressão Gênica , Humanos , Lactente , Lisossomos/efeitos dos fármacos , Lisossomos/enzimologia , Terapia de Alvo Molecular , Transtornos Neurocognitivos/tratamento farmacológico , Transtornos Neurocognitivos/genética , Transtornos Neurocognitivos/patologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Fármacos Neuroprotetores/uso terapêutico , Transdução de Sinais
9.
J Neurol ; 266(3): 551-564, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29956026

RESUMO

Huntington's disease (HD) is a fatal neurodegenerative disease caused by mutant HTT gene expansions of CAG triplet repeat numbers that are inherited in an autosomal dominant manner. HD patients display multiple clinical features that are correlated with HTT CAG repeat numbers that include age of disease onset, motor dysfunction, cognitive deficits, compromised daily living capacity, and brain neurodegeneration. It is important to understand the significant relationships of the multiple HD clinical deficits correlated with the number of mutant HTT CAG expansions that are the genetic basis for HD disabilities. Therefore, this review highlights the significant correlations of the HD clinical features of age of onset, motor and cognitive disabilities, decline in living capabilities, weight loss, risk of death, and brain neurodegeneration with respect to their associations with CAG repeat lengths of the HTT gene. Quantitative HTT gene expression patterns analyzed in normal adult human brain regions demonstrated its distribution in areas known to undergo neurodegeneration in HD, as well as in other brain regions. Future investigation of the relationships of the spectrum of clinical HD features with mutant HTT molecular mechanisms will be important to gain understanding of how mutant CAG expansions of the HTT gene result in the devastating disabilities of HD patients.


Assuntos
Proteína Huntingtina/genética , Doença de Huntington , Repetições de Trinucleotídeos/genética , Humanos , Doença de Huntington/genética , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Doença de Huntington/fisiopatologia
10.
J Am Soc Mass Spectrom ; 29(5): 935-947, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29556927

RESUMO

Neuropeptides are vital for cell-cell communication and function in the regulation of the nervous and endocrine systems. They are generated by post-translational modification (PTM) steps resulting in small active peptides generated from prohormone precursors. Phosphorylation is a significant PTM for the bioactivity of neuropeptides. From the known diversity of distinct neuropeptide functions, it is hypothesized that the extent of phosphorylation varies among different neuropeptides. To assess this hypothesis, neuropeptide-containing dense core secretory vesicles from bovine adrenal medullary chromaffin cells were subjected to global phosphopeptidomics analyses by liquid chromatography (LC)-mass spectrometry (MS/MS). Phosphopeptides were identified directly by LC-MS/MS and indirectly by phosphatase treatment followed by LC-MS/MS. The data identified numerous phosphorylated peptides derived from neuropeptide precursors such as chromogranins, secretogranins, proenkephalin and pro-NPY. Phosphosite occupancies were observed at high and low levels among identified peptides and many of the high occupancy phosphopeptides represent prohormone-derived peptides with currently unknown bioactivities. Peptide sequence analyses demonstrated SxE as the most prevalent phosphorylation site motif, corresponding to phosphorylation sites of the Fam20C protein kinase known to be present in the secretory pathway. The range of high to low phosphosite occupancies for neuropeptides demonstrates cellular regulation of neuropeptide phosphorylation. Graphical Abstract ᅟ.


Assuntos
Neuropeptídeos/análise , Fosfopeptídeos/análise , Vesículas Secretórias/química , Glândulas Suprarrenais/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Bovinos , Fosforilação , Processamento de Proteína Pós-Traducional , Espectrometria de Massas em Tandem
11.
Neurodegener Dis ; 14(2): 85-97, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24943989

RESUMO

BACKGROUND AND AIMS: N-truncated pyroglutamate (pGlu)-amyloid-ß [Aß(3-40/42)] peptides are key components that promote Aß peptide accumulation, leading to neurodegeneration and memory loss in Alzheimer's disease. Because Aß deposition in the brain occurs in an activity-dependent manner, it is important to define the subcellular organelle for pGlu-Aß(3-40/42) production by glutaminyl cyclase (QC) and their colocalization with full-length Aß(1-40/42) peptides for activity-dependent, regulated secretion. Therefore, the objective of this study was to investigate the hypothesis that pGlu-Aß and QC are colocalized with Aß in dense-core secretory vesicles (DCSV) for activity-dependent secretion with neurotransmitters. METHODS: Purified DCSV were assessed for pGlu-Aß(3-40/42), Aß(1-40/42), QC, and neurotransmitter secretion. Neuron-like chromaffin cells were analyzed for cosecretion of pGlu-Aß, QC, Aß, and neuropeptides. The cells were treated with a QC inhibitor, and pGlu-Aß production was measured. Human neuroblastoma cells were also examined for pGlu-Aß and QC secretion. RESULTS: Isolated DCSV contain pGlu-Aß(3-40/42), QC, and Aß(1-40/42) with neuropeptide and catecholamine neurotransmitters. Cellular pGlu-Aß and QC undergo activity-dependent cosecretion with Aß and enkephalin and galanin neurotransmitters. The QC inhibitor decreased the level of secreted pGlu-Aß. The human neuroblastoma cells displayed regulated secretion of pGlu-Aß that was colocalized with QC. CONCLUSIONS: pGlu-Aß and QC are present with Aß in DCSV and undergo activity-dependent, regulated cosecretion with neurotransmitters.


Assuntos
Aminoaciltransferases/metabolismo , Peptídeos beta-Amiloides/metabolismo , Vesículas Secretórias/metabolismo , Aminoaciltransferases/análise , Peptídeos beta-Amiloides/análise , Peptídeos beta-Amiloides/química , Linhagem Celular Tumoral , Grânulos Cromafim/química , Grânulos Cromafim/metabolismo , Grânulos Cromafim/ultraestrutura , Humanos , Ácido Pirrolidonocarboxílico/metabolismo , Vesículas Secretórias/química , Vesículas Secretórias/ultraestrutura
12.
Peptides ; 46: 126-35, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23747840

RESUMO

Beta-amyloid (Aß) peptides are secreted from neurons, resulting in extracellular accumulation of Aß and neurodegeneration of Alzheimer's disease. Because neuronal secretion is fundamental for the release of neurotransmitters, this study assessed the hypothesis that Aß undergoes co-release with neurotransmitters. Model neuronal-like chromaffin cells were investigated, and results illustrate regulated, co-secretion of Aß(1-40) and Aß(1-42) with peptide neurotransmitters (galanin, enkephalin, and NPY) and catecholamine neurotransmitters (dopamine, norepinephrine, and epinephrine). Regulated secretion from chromaffin cells was stimulated by KCl depolarization and nicotine. Forskolin, stimulating cAMP, also induced co-secretion of Aß peptides with peptide and catecholamine neurotransmitters. These data suggested the co-localization of Aß with neurotransmitters in dense core secretory vesicles (DCSV) that store and secrete such chemical messengers. Indeed, Aß was demonstrated to be present in DCSV with neuropeptide and catecholamine transmitters. Furthermore, the DCSV organelle contains APP and its processing proteases, ß- and γ-secretases, that are necessary for production of Aß. Thus, Aß can be generated in neurotransmitter-containing DCSV. Human IMR32 neuroblastoma cells also displayed regulated secretion of Aß(1-40) and Aß(1-42) with the galanin neurotransmitter. These findings illustrate that Aß peptides are present in neurotransmitter-containing DCSV, and undergo co-secretion with neuropeptide and catecholamine neurotransmitters that regulate brain functions.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Catecolaminas/metabolismo , Neuropeptídeos/metabolismo , Neurotransmissores/metabolismo , Fragmentos de Peptídeos/metabolismo , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Bovinos , Células Cultivadas , Células Cromafins/metabolismo , Colforsina/farmacologia , AMP Cíclico/metabolismo , Dopamina/metabolismo , Encefalinas/metabolismo , Epinefrina/metabolismo , Galanina/metabolismo , Estimulantes Ganglionares/farmacologia , Humanos , Neuroblastoma , Neurônios/metabolismo , Neuropeptídeo Y/metabolismo , Nicotina/farmacologia , Norepinefrina/metabolismo , Vesículas Secretórias/metabolismo
13.
J Biol Chem ; 287(19): 15232-41, 2012 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-22393040

RESUMO

Proteases are required for processing precursors into active neuropeptides that function as neurotransmitters for cell-cell communication. This study demonstrates the novel function of human cathepsin V protease for producing the neuropeptides enkephalin and neuropeptide Y (NPY). Cathepsin V is a human-specific cysteine protease gene. Findings here show that expression of cathepsin V in neuroendocrine PC12 cells and human neuronal SK-N-MC cells results in production of (Met)enkephalin from proenkephalin. Gene silencing of cathepsin V by siRNA in human SK-N-MC cells results in reduction of (Met)enkephalin by more than 80%, illustrating the prominent role of cathepsin V for neuropeptide production. In vitro processing of proenkephalin by cathepsin V occurs at dibasic residue sites to generate enkephalin-containing peptides and an ∼24-kDa intermediate present in human brain. Cathepsin V is present in human brain cortex and hippocampus where enkephalin and NPY are produced and is present in purified human neuropeptide secretory vesicles. Colocalization of cathepsin V with enkephalin and NPY in secretory vesicles of human neuroblastoma cells was illustrated by confocal microscopy. Furthermore, expression of cathepsin V with proNPY results in NPY production. These findings indicate the unique function of human cathepsin V for producing enkephalin and NPY neuropeptides required for neurotransmission in health and neurological diseases.


Assuntos
Catepsinas/metabolismo , Cisteína Endopeptidases/metabolismo , Encefalinas/metabolismo , Neuropeptídeo Y/metabolismo , Neurotransmissores/metabolismo , Idoso , Sequência de Aminoácidos , Animais , Western Blotting , Catepsinas/genética , Linhagem Celular Tumoral , Córtex Cerebral/enzimologia , Grânulos Cromafim/enzimologia , Cisteína Endopeptidases/genética , Encefalinas/genética , Hipocampo/enzimologia , Humanos , Masculino , Microscopia Confocal , Dados de Sequência Molecular , Células PC12 , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Interferência de RNA , Ratos , Transfecção
14.
J Proteome Res ; 9(10): 5002-24, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20695487

RESUMO

Regulated secretion of neurotransmitters and neurohumoral factors from dense core secretory vesicles provides essential neuroeffectors for cell-cell communication in the nervous and endocrine systems. This study provides comprehensive proteomic characterization of the categories of proteins in chromaffin dense core secretory vesicles that participate in cell-cell communication from the adrenal medulla. Proteomic studies were conducted by nano-HPLC Chip MS/MS tandem mass spectrometry. Results demonstrate that these secretory vesicles contain proteins of distinct functional categories consisting of neuropeptides and neurohumoral factors, protease systems, neurotransmitter enzymes and transporters, receptors, enzymes for biochemical processes, reduction/oxidation regulation, ATPases, protein folding, lipid biochemistry, signal transduction, exocytosis, calcium regulation, as well as structural and cell adhesion proteins. The secretory vesicle proteomic data identified 371 proteins in the soluble fraction and 384 membrane proteins, for a total of 686 distinct secretory vesicle proteins. Notably, these proteomic analyses illustrate the presence of several neurological disease-related proteins in these secretory vesicles, including huntingtin interacting protein, cystatin C, ataxin 7, and prion protein. Overall, these findings demonstrate that multiple protein categories participate in dense core secretory vesicles for production, storage, and secretion of bioactive neuroeffectors for cell-cell communication in health and disease.


Assuntos
Comunicação Celular , Proteínas/metabolismo , Proteômica/métodos , Vesículas Secretórias/metabolismo , Medula Suprarrenal/citologia , Medula Suprarrenal/metabolismo , Animais , Bovinos , Grânulos Cromafim/metabolismo , Grânulos Cromafim/ultraestrutura , Cromatografia Líquida de Alta Pressão , Análise por Conglomerados , Microscopia Eletrônica , Doenças do Sistema Nervoso/metabolismo , Neuropeptídeos/metabolismo , Neurotransmissores/metabolismo , Proteínas/classificação , Vesículas Secretórias/ultraestrutura , Espectrometria de Massas em Tandem
15.
Endocrine ; 35(3): 429-37, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19343278

RESUMO

The production of the peptide hormones ACTH, alpha-MSH, and beta-endorphin requires proteolytic processing of POMC which is hypothesized to utilize dual cysteine- and subtilisin-like protease pathways, consisting of the secretory vesicle cathepsin L pathway and the well-known subtilisin-like prohormone convertase (PC) pathway. To gain knowledge of these protease components in human pituitary where POMC-derived peptide hormones are produced, this study investigated the presence of these protease pathway components in human pituitary. With respect to the cathepsin L pathway, human pituitary contained cathepsin L of 27-29 kDa and aminopeptidase B of approximately 64 kDa, similar to those in secretory vesicles of related neuroendocrine tissues. The serpin inhibitor endopin 2, a selective inhibitor of cathepsin L, was also present. With respect to the PC pathway, human pituitary expresses PC1/3 and PC2 of approximately 60-65 kDa, which represent active PC1/3 and PC2; peptide hormone production then utilizes carboxypeptidase E (CPE) which is present as a protein of approximately 55 kDa. Analyses of POMC products in human pituitary showed that they resemble those in mouse pituitary which utilizes cathepsin L and PC2 for POMC processing. These findings suggest that human pituitary may utilize the cathepsin L and prohormone convertase pathways for producing POMC-derived peptide hormones.


Assuntos
Hormônio Adrenocorticotrópico/metabolismo , Catepsinas/metabolismo , Cisteína Endopeptidases/metabolismo , Hipófise/metabolismo , Pró-Opiomelanocortina/metabolismo , Pró-Proteína Convertases/metabolismo , alfa-MSH/metabolismo , beta-Endorfina/metabolismo , Hormônio Adrenocorticotrópico/análise , Catepsina L , Humanos , Redes e Vias Metabólicas/fisiologia , Modelos Biológicos , Hormônios Peptídicos/análise , Hormônios Peptídicos/metabolismo , Hipófise/química , Hipófise/enzimologia , alfa-MSH/análise , beta-Endorfina/análise
16.
J Biol Chem ; 283(51): 35652-9, 2008 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-18849346

RESUMO

The pituitary hormones adrenocorticotropic hormone (ACTH), beta-endorphin, and alpha-melanocyte stimulating hormone (alpha-MSH) are synthesized by proteolytic processing of their common proopiomelanocortin (POMC) precursor. Key findings from this study show that cathepsin L functions as a major proteolytic enzyme for the production of POMC-derived peptide hormones in secretory vesicles. Specifically, cathepsin L knock-out mice showed major decreases in ACTH, beta-endorphin, and alpha-MSH that were reduced to 23, 18, and 7% of wild-type controls (100%) in pituitary. These decreased peptide levels were accompanied by increased levels of POMC consistent with proteolysis of POMC by cathepsin L. Immunofluorescence microscopy showed colocalization of cathepsin L with beta-endorphin and alpha-MSH in the intermediate pituitary and with ACTH in the anterior pituitary. In contrast, cathepsin L was only partially colocalized with the lysosomal marker Lamp-1 in pituitary, consistent with its extralysosomal function in secretory vesicles. Expression of cathepsin L in pituitary AtT-20 cells resulted in increased ACTH and beta-endorphin in the regulated secretory pathway. Furthermore, treatment of AtT-20 cells with CLIK-148, a specific inhibitor of cathepsin L, resulted in reduced production of ACTH and accumulation of POMC. These findings demonstrate a prominent role for cathepsin L in the production of ACTH, beta-endorphin, and alpha-MSH peptide hormones in the regulated secretory pathway.


Assuntos
Hormônio Adrenocorticotrópico/metabolismo , Catepsinas/metabolismo , Cisteína Endopeptidases/metabolismo , Hipófise/enzimologia , Vesículas Secretórias/enzimologia , alfa-MSH/metabolismo , beta-Endorfina/metabolismo , Hormônio Adrenocorticotrópico/genética , Animais , Catepsina L , Catepsinas/genética , Bovinos , Cisteína Endopeptidases/genética , Expressão Gênica , Lisossomos/enzimologia , Camundongos , Camundongos Knockout , Hipófise/citologia , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , alfa-MSH/genética , beta-Endorfina/genética
17.
J Biol Chem ; 282(13): 9556-9563, 2007 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-17244622

RESUMO

Proteases within secretory vesicles are required for conversion of neuropeptide precursors into active peptide neurotransmitters and hormones. This study demonstrates the novel cellular role of the cysteine protease cathepsin L for producing the (Met)enkephalin peptide neurotransmitter from proenkephalin (PE) in the regulated secretory pathway of neuroendocrine PC12 cells. These findings were achieved by coexpression of PE and cathepsin L cDNAs in PC12 cells with analyses of PE-derived peptide products. Expression of cathepsin L resulted in highly increased cellular levels of (Met)enkephalin, resulting from the conversion of PE to enkephalin-containing intermediates of 23, 18-19, 8-9, and 4.5 kDa that were similar to those present in vivo. Furthermore, expression of cathepsin L with PE resulted in increased amounts of nicotine-induced secretion of (Met)enkephalin. These results indicate increased levels of (Met)enkephalin within secretory vesicles of the regulated secretory pathway. Importantly, cathespin L expression was directed to secretory vesicles, demonstrated by colocalization of cathepsin L-DsRed fusion protein with enkephalin and chromogranin A neuropeptides that are present in secretory vesicles. In vivo studies also showed that cathepsin L in vivo was colocalized with enkephalin. The newly defined secretory vesicle function of cathepsin L for biosynthesis of active enkephalin opioid peptide contrasts with its function in lysosomes for protein degradation. These findings demonstrate cathepsin L as a distinct cysteine protease pathway for producing the enkephalin member of neuropeptides.


Assuntos
Catepsinas/biossíntese , Catepsinas/genética , Cisteína Endopeptidases/biossíntese , Cisteína Endopeptidases/genética , Encefalinas/biossíntese , Encefalinas/metabolismo , Vesículas Secretórias/metabolismo , Animais , Catepsina L , Catepsinas/fisiologia , Bovinos , Cisteína Endopeptidases/fisiologia , Precursores Enzimáticos/fisiologia , Lisossomos/enzimologia , Células PC12 , Proteínas/metabolismo , Ratos , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA