Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Med Phys ; 51(1): 139-155, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38047554

RESUMO

BACKGROUND: The use of computed tomography (CT) for attenuation correction (AC) in whole-body PET/CT can result in a significant contribution to radiation exposure. This can become a limiting factor for reducing considerably the overall radiation exposure of the patient when using the new long axial field of view (LAFOV) PET scanners. However, recent CT technology have introduced features such as the tin (Sn) filter, which can substantially reduce the CT radiation dose. PURPOSE: The purpose of this study was to investigate the ultra-low dose CT for attenuation correction using the Sn filter together with other dose reduction options such as tube current (mAs) reduction. We explore the impact of dose reduction in the context of AC-CT and how it affects PET image quality. METHODS: The study evaluated a range of ultra-low dose CT protocols using five physical phantoms that represented a broad collection of tissue electron densities. A long axial field of view (LAFOV) PET/CT scanner was used to scan all phantoms, applying various CT dose reduction parameters such as reducing tube current (mAs), increasing the pitch value, and applying the Sn filter. The effective dose resulting from the CT scans was determined using the CTDIVol reported by the scanner. Several voxel-based and volumes of interest (VOI)-based comparisons were performed to compare the ultra-low dose CT images, the generated attenuation maps, and corresponding PET images against those images acquired with the standard low dose CT protocol. Finally, two patient datasets were acquired using one of the suggested ultra-low dose CT settings. RESULTS: By incorporating the Sn filter and adjusting mAs to the lowest available value, the radiation dose in CT images of PBU-60 phantom was significantly reduced; resulting in an effective dose of nearly 2% compared to the routine low dose CT protocols currently in clinical use. The assessment of PET images using VOI and voxel-based comparisons indicated relative differences (RD%) of under 6% for mean activity concentration (AC) in the torso phantom and patient dataset and under 8% for a source point in the CIRS phantom. The maximum RD% value of AC was 14% for the point source in the CIRS phantom. Increasing the tube current from 6 mAs to 30 mAs in patients with high BMI, or with arms down, can suppress the photon starvation artifact, whilst still preserving a dose reduction of 90%. CONCLUSIONS: Introducing a Sn filter in CT imaging lowers radiation dose by more than 90%. This reduction has minimal effect on PET image quantification at least for patients without Body Mass Index (BMI) higher than 30. Notably, this study results need validation using a larger clinical PET/CT dataset in the future, including patients with higher BMI.


Assuntos
Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia Computadorizada por Raios X , Humanos , Doses de Radiação , Tomografia Computadorizada por Raios X/métodos , Tomógrafos Computadorizados , Tomografia por Emissão de Pósitrons/métodos , Imagens de Fantasmas
2.
Cancers (Basel) ; 15(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37958347

RESUMO

The latest technical development in the field of positron emission tomography/computed tomography (PET/CT) imaging has been the extension of the PET axial field-of-view. As a result of the increased number of detectors, the long axial field-of-view (LAFOV) PET systems are not only characterized by a larger anatomical coverage but also by a substantially improved sensitivity, compared with conventional short axial field-of-view PET systems. In clinical practice, this innovation has led to the following optimization: (1) improved overall image quality, (2) decreased duration of PET examinations, (3) decreased amount of radioactivity administered to the patient, or (4) a combination of any of the above. In this review, novel applications of LAFOV PET in oncology are highlighted and future directions are discussed.

3.
J Med Signals Sens ; 13(2): 118-128, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37448548

RESUMO

Background: Computed tomography (CT) scan is one of the main tools to diagnose and grade COVID-19 progression. To avoid the side effects of CT imaging, low-dose CT imaging is of crucial importance to reduce population absorbed dose. However, this approach introduces considerable noise levels in CT images. Methods: In this light, we set out to simulate four reduced dose levels (60% dose, 40% dose, 20% dose, and 10% dose) of standard CT imaging using Beer-Lambert's law across 49 patients infected with COVID-19. Then, three denoising filters, namely Gaussian, bilateral, and median, were applied to the different low-dose CT images, the quality of which was assessed prior to and after the application of the various filters via calculation of peak signal-to-noise ratio, root mean square error (RMSE), structural similarity index measure, and relative CT-value bias, separately for the lung tissue and whole body. Results: The quantitative evaluation indicated that 10%-dose CT images have inferior quality (with RMSE = 322.1 ± 104.0 HU and bias = 11.44% ± 4.49% in the lung) even after the application of the denoising filters. The bilateral filter exhibited superior performance to suppress the noise and recover the underlying signals in low-dose CT images compared to the other denoising techniques. The bilateral filter led to RMSE and bias of 100.21 ± 16.47 HU and - 0.21% ± 1.20%, respectively, in the lung regions for 20%-dose CT images compared to the Gaussian filter with RMSE = 103.46 ± 15.70 HU and bias = 1.02% ± 1.68% and median filter with RMSE = 129.60 ± 18.09 HU and bias = -6.15% ± 2.24%. Conclusions: The 20%-dose CT imaging followed by the bilateral filtering introduced a reasonable compromise between image quality and patient dose reduction.

4.
Iran J Med Sci ; 47(5): 440-449, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36117575

RESUMO

Background: Automated image segmentation is an essential step in quantitative image analysis. This study assesses the performance of a deep learning-based model for lung segmentation from computed tomography (CT) images of normal and COVID-19 patients. Methods: A descriptive-analytical study was conducted from December 2020 to April 2021 on the CT images of patients from various educational hospitals affiliated with Mashhad University of Medical Sciences (Mashhad, Iran). Of the selected images and corresponding lung masks of 1,200 confirmed COVID-19 patients, 1,080 were used to train a residual neural network. The performance of the residual network (ResNet) model was evaluated on two distinct external test datasets, namely the remaining 120 COVID-19 and 120 normal patients. Different evaluation metrics such as Dice similarity coefficient (DSC), mean absolute error (MAE), relative mean Hounsfield unit (HU) difference, and relative volume difference were calculated to assess the accuracy of the predicted lung masks. The Mann-Whitney U test was used to assess the difference between the corresponding values in the normal and COVID-19 patients. P<0.05 was considered statistically significant. Results: The ResNet model achieved a DSC of 0.980 and 0.971 and a relative mean HU difference of -2.679% and -4.403% for the normal and COVID-19 patients, respectively. Comparable performance in lung segmentation of normal and COVID-19 patients indicated the model's accuracy for identifying lung tissue in the presence of COVID-19-associated infections. Although a slightly better performance was observed in normal patients. Conclusion: The ResNet model provides an accurate and reliable automated lung segmentation of COVID-19 infected lung tissue.A preprint version of this article was published on arXiv before formal peer review (https://arxiv.org/abs/2104.02042).


Assuntos
COVID-19 , COVID-19/diagnóstico por imagem , Humanos , Pulmão/diagnóstico por imagem , Redes Neurais de Computação , Tórax , Tomografia Computadorizada por Raios X/métodos
5.
Clin Nucl Med ; 46(8): 609-615, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33661195

RESUMO

OBJECTIVE: This study evaluates the feasibility of direct scatter and attenuation correction of whole-body 68Ga-PSMA PET images in the image domain using deep learning. METHODS: Whole-body 68Ga-PSMA PET images of 399 subjects were used to train a residual deep learning model, taking PET non-attenuation-corrected images (PET-nonAC) as input and CT-based attenuation-corrected PET images (PET-CTAC) as target (reference). Forty-six whole-body 68Ga-PSMA PET images were used as an independent validation dataset. For validation, synthetic deep learning-based attenuation-corrected PET images were assessed considering the corresponding PET-CTAC images as reference. The evaluation metrics included the mean absolute error (MAE) of the SUV, peak signal-to-noise ratio, and structural similarity index (SSIM) in the whole body, as well as in different regions of the body, namely, head and neck, chest, and abdomen and pelvis. RESULTS: The deep learning-guided direct attenuation and scatter correction produced images of comparable visual quality to PET-CTAC images. It achieved an MAE, relative error (RE%), SSIM, and peak signal-to-noise ratio of 0.91 ± 0.29 (SUV), -2.46% ± 10.10%, 0.973 ± 0.034, and 48.171 ± 2.964, respectively, within whole-body images of the independent external validation dataset. The largest RE% was observed in the head and neck region (-5.62% ± 11.73%), although this region exhibited the highest value of SSIM metric (0.982 ± 0.024). The MAE (SUV) and RE% within the different regions of the body were less than 2.0% and 6%, respectively, indicating acceptable performance of the deep learning model. CONCLUSIONS: This work demonstrated the feasibility of direct attenuation and scatter correction of whole-body 68Ga-PSMA PET images in the image domain using deep learning with clinically tolerable errors. The technique has the potential of performing attenuation correction on stand-alone PET or PET/MRI systems.


Assuntos
Aprendizado Profundo , Ácido Edético/análogos & derivados , Processamento de Imagem Assistida por Computador/métodos , Oligopeptídeos , Tomografia por Emissão de Pósitrons , Espalhamento de Radiação , Estudos de Viabilidade , Isótopos de Gálio , Radioisótopos de Gálio , Humanos , Masculino , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA