Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Am J Pathol ; 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38885926

RESUMO

This review focuses on the dual role of platelets in atherosclerosis and thrombosis, exploring their involvement in inflammation, angiogenesis, and plaque formation, as well as their hemostatic and prothrombotic functions. Beyond their thrombotic functions, platelets engage in complex interactions with diverse cell types, influencing disease resolution and progression. The contribution of platelet degranulation helps in the formation of atheromatous plaque, whereas the reciprocal interaction with monocytes adds complexity. Alterations in platelet membrane receptors and signaling cascades contribute to advanced atherosclerosis, culminating in atherothrombotic events. Understanding these multifaceted roles of platelets will lead to the development of targeted antiplatelet strategies for effective cardiovascular disease prevention and treatment. Understanding platelet functions in atherosclerosis and atherothrombosis at different stages of disease will be critical for designing targeted treatments and medications to prevent or cure the disease Through this understanding, platelets can be targeted at specific times in the atherosclerosis process, possibly preventing the development of atherothrombosis.

2.
Heliyon ; 10(1): e23561, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38187339

RESUMO

Diabetes mellitus (DM) poses a significant global health burden, with hyperglycemia being a primary contributor to complications and high morbidity associated with this disorder. Existing glucose management strategies have shown suboptimal effectiveness, necessitating alternative approaches. In this study, we explored the role of high mobility group box 1 (HMGB1) in hyperglycemia, a protein implicated in initiating inflammation and strongly correlated with DM onset and progression. We hypothesized that HMGB1 knockdown will mitigate hyperglycemia severity and enhance glucose tolerance. To test this hypothesis, we utilized a novel inducible HMGB1 knockout (iHMGB1 KO) mouse model exhibiting systemic HMGB1 knockdown. Hyperglycemic phenotype was induced using low dose streptozotocin (STZ) injections, followed by longitudinal glucose measurements and oral glucose tolerance tests to evaluate the effect of HMGB1 knockdown on glucose metabolism. Our findings showed a substantial reduction in glucose levels and enhanced glucose tolerance in HMGB1 knockdown mice. Additionally, we performed RNA sequencing analyses, which identified potential alternations in genes and molecular pathways within the liver and skeletal muscle tissue that may account for the in vivo phenotypic changes observed in hyperglycemic mice following HMGB1 knockdown. In conclusion, our present study delivers the first direct evidence of a causal relationship between systemic HMGB1 knockdown and hyperglycemia in vivo, an association that had remained unexamined prior to this research. This discovery positions HMGB1 knockdown as a potentially efficacious therapeutic target for addressing hyperglycemia and, by extension, the DM epidemic. Furthermore, we have revealed potential underlying mechanisms, establishing the essential groundwork for subsequent in-depth mechanistic investigations focused on further elucidating and harnessing the promising therapeutic potential of HMGB1 in DM management.

3.
Arterioscler Thromb Vasc Biol ; 43(10): 2023-2029, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37675635

RESUMO

BACKGROUND: We hypothesized that transcriptomic profiling of muscle satellite cells in peripheral artery disease (PAD) would identify damage-related pathways contributing to skeletal muscle myopathy. We identified a potential role for ferroptosis-a form of programmed lytic cell death by iron-mediated lipid peroxidation-as one such pathway. Ferroptosis promotes myopathy in ischemic cardiac muscle but has an unknown role in PAD. METHODS: Muscle satellite cells from donors with PAD were obtained during surgery. cDNA libraries were processed for single-cell RNA sequencing using the 10X Genomics platform. Protein expression was confirmed based on pathways inferred by transcriptomic analysis. RESULTS: Unsupervised cluster analysis of over 25 000 cells aggregated from 8 donor samples yielded distinct cell populations grouped by a shared unique transcriptional fingerprint. Quiescent cells were diminished in ischemic muscle while myofibroblasts and apoptotic cells were prominent. Differential gene expression demonstrated a surprising increase in genes associated with iron transport and oxidative stress and a decrease in GPX4 (glutathione peroxidase 4) in ischemic PAD-derived cells. Release of the danger signal HMGB1 (high mobility group box-1) correlated with ferroptotic markers including surface transferrin receptor and were higher in ischemia. Furthermore, lipid peroxidation in muscle satellite cells was modulated by ferrostatin, a ferroptosis inhibitor. Histology confirmed iron deposition and lipofuscin, an inducer of ferroptosis in PAD-affected muscle. CONCLUSIONS: This report presents a novel finding that genes known to be involved in ferroptosis are differentially expressed in human skeletal muscle affected by PAD. Targeting ferroptosis may be a novel therapeutic strategy to reduce PAD myopathy.


Assuntos
Ferroptose , Doenças Musculares , Doença Arterial Periférica , Células Satélites de Músculo Esquelético , Humanos , Ferroptose/genética , Células Satélites de Músculo Esquelético/metabolismo , Transcriptoma , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Peroxidação de Lipídeos/fisiologia , Ferro/metabolismo , Doença Arterial Periférica/genética , Isquemia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA