Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-37602146

RESUMO

Since its first identification in 1894 during the third pandemic in Hong Kong, there has been significant progress of understanding the lifestyle of Yersinia pestis, the pathogen that is responsible for plague. Although we now have some understanding of the pathogen's physiology, genetics, genomics, evolution, gene regulation, pathogenesis and immunity, there are many unknown aspects of the pathogen and its disease development. Here, we focus on some of the knowns and unknowns relating to Y. pestis and plague. We notably focus on some key Y. pestis physiological and virulence traits that are important for its mammal-flea-mammal life cycle but also its emergence from the enteropathogen Yersinia pseudotuberculosis. Some aspects of the genetic diversity of Y. pestis, the distribution and ecology of plague as well as the medical countermeasures to protect our population are also provided. Lastly, we present some biosafety and biosecurity information related to Y. pestis and plague.

2.
Microorganisms ; 10(2)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35208932

RESUMO

Chlamydia trachomatis (CT) is a major cause of sexually transmitted diseases worldwide. The multilocus sequence typing (MLST) of clinical samples from random heterosexual chlamydia patients who were either asymptomatic or reported clinical manifestations of genital chlamydiosis (n = 63) in each of the seven major regions of the Republic of Belarus in 2017-2018 revealed 12 different CT sequence types (STs). We found seven known STs, ST4, ST6, ST9, ST13, ST38, ST95 and ST110, and five novel variants, namely ST271-ST275, which have not been detected elsewhere thus far. The ST4 variant was predominant (27/63, 42.9%) and detected in six out of seven regions. The two most common STs, ST9 and ST13, were regularly seen in four out of seven regions. In contrast, the remaining STs, ST6, ST38, ST95, ST110, and novel STs271-275, surfaced randomly in different parts of the country. The emergence of novel STs was registered in two regions, namely Minsk (ST271 and ST275) and Brest (ST271, ST272, ST273, and ST274). All the STs of detected CT strains were clustered into two Groups, I and III, which are characteristic of CT urogenital strains. No STs typical for Group II, specific to the LGV strains, were revealed. Our study contributes to better understanding the genetic diversity and molecular evolution of CT, one of the most important pathogens in public health worldwide.

3.
mBio ; 12(6): e0322321, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34872353

RESUMO

Mice immunized with a combination of an adenovirus vector (Ad5-YFV) and live-attenuated (LMA)-based vaccines were evaluated for protective efficacy against pneumonic plague. While the Ad5-YFV vaccine harbors a fusion cassette of three genes encoding YscF, F1, and LcrV, LMA represents a mutant of parental Yersinia pestis CO92 deleted for genes encoding Lpp, MsbB, and Ail. Ad5-YFV and LMA were either administered simultaneously (1-dose regimen) or 21 days apart in various orders and route of administration combinations (2-dose regimen). The 2-dose regimen induced robust immune responses to provide full protection to animals against parental CO92 and its isogenic F1 deletion mutant (CAF-) challenges during both short- and long-term studies. Mice intranasally (i.n.) immunized with Ad5-YFV first followed by LMA (i.n. or intramuscularly [i.m.]) had higher T- and B-cell proliferative responses and LcrV antibody titers than those in mice vaccinated with LMA (i.n. or i.m.) first ahead of Ad5-YFV (i.n.) during the long-term study. Specifically, the needle- and adjuvant-free vaccine combination (i.n.) is ideal for use in plague regions of endemicity. Conversely, with a 1-dose regimen, mice vaccinated with Ad5-YFV i.n. and LMA by the i.m. route provided complete protection to animals against CO92 and its CAF- mutant challenges and elicited Th1/Th2, as well as Th17 responses, making it suitable for emergency vaccination during a plague outbreak or bioterrorist attack. This is a first study in which a viral vector-based and live-attenuated vaccines were effectively used in combination, representing adjuvant- and/or needle-free immunization, with each vaccine triggering a distinct cellular immune response. IMPORTANCE Yersinia pestis, the causative agent of plague, is a Tier-1 select agent and a reemerging human pathogen. A 2017 outbreak in Madagascar with >75% of cases being pneumonic and 8.6% causalities emphasized the importance of the disease. The World Health Organization has indicated an urgent need to develop new-generation subunit and live-attenuated plague vaccines. We have developed a subunit vaccine, including three components (YscF, F1, and LcrV) using an adenovirus platform (Ad5-YFV). In addition, we have deleted virulence genes of Y. pestis (e.g., lpp, msbB, and ail) to develop a live-attenuated vaccine (LMA). Both of these vaccines generated robust humoral and cellular immunity and were highly efficacious in several animal models. We hypothesized the use of a heterologous prime-boost strategy or administrating both vaccines simultaneously could provide an adjuvant- and/or a needle-free vaccine(s) that has attributes of both vaccines for use in regions of endemicity and during an emergency situation.


Assuntos
Adenoviridae/imunologia , Antígenos de Bactérias/administração & dosagem , Vacina contra a Peste/administração & dosagem , Peste/prevenção & controle , Pneumonia/prevenção & controle , Vacinas Atenuadas/administração & dosagem , Yersinia pestis/imunologia , Adenoviridae/genética , Adjuvantes Imunológicos/administração & dosagem , Administração Intranasal , Animais , Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Vetores Genéticos/genética , Vetores Genéticos/imunologia , Humanos , Camundongos , Peste/imunologia , Peste/microbiologia , Vacina contra a Peste/genética , Vacina contra a Peste/imunologia , Pneumonia/imunologia , Pneumonia/microbiologia , Células Th1/imunologia , Células Th17/imunologia , Células Th2/imunologia , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Yersinia pestis/genética
4.
NPJ Vaccines ; 6(1): 21, 2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33514747

RESUMO

A plague vaccine with a fusion cassette of YscF, F1, and LcrV encoding genes in an adenovirus-5 vector (rAd5-YFV) is evaluated for efficacy and immune responses in mice. Two doses of the vaccine provides 100% protection when administered intranasally against challenge with Yersinia pestis CO92 or its isogenic F1 mutant in short- or long- term immunization in pneumonic/bubonic plague models. The corresponding protection rates drop in rAd5-LcrV monovalent vaccinated mice in plague models. The rAd5-YFV vaccine induces superior humoral, mucosal and cell-mediated immunity, with clearance of the pathogen. Immunization of mice with rAd5-YFV followed by CO92 infection dampens proinflammatory cytokines and neutrophil chemoattractant production, while increasing Th1- and Th2-cytokine responses as well as macrophage/monocyte chemo-attractants when compared to the challenge control animals. This is a first study showing complete protection of mice from pneumonic/bubonic plague with a viral vector-based vaccine without the use of needles and the adjuvant.

5.
Vaccines (Basel) ; 8(4)2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33228200

RESUMO

The recent progress in immunoinformatics provided the basis for an accelerated development of target-specific peptide vaccines as an alternative to the traditional vaccine concept. However, there is still limited information on whether the in silico predicted immunoreactive epitopes correspond to those obtained from the actual experiments. Here, humoral and cellular immune responses to two major Yersinia pestis protective antigens, F1 and LcrV, were studied in human donors immunized with the live plague vaccine (LPV) based on the attenuated Y. pestis strain EV line NIIEG. The F1 antigen provided modest specific cellular (mixed T helper 1 (Th1)/Th2 type) and humoral immune responses in vaccinees irrespective of the amount of annual vaccinations and duration of the post-vaccination period. The probing of the F1 overlapping peptide library with the F1-positive sera revealed the presence of seven linear B cell epitopes, which were all also predicted by in silico assay. The immunoinformatics study evaluated their antigenicity, toxicity, and allergenic properties. The epitope TSQDGNNH was mostly recognized by the sera from recently vaccinated donors rather than antibodies from those immunized decades ago, suggesting the usefulness of this peptide for differentiation between recent and long-term vaccinations. The in silico analysis predicted nine linear LcrV-specific B-cell epitopes; however, weak antibody and cellular immune responses prevented their experimental evaluation, indicating that LcrV is a poor marker of successful vaccination. No specific Th17 immune response to either F1 or LcrV was detected, and there were no detectable serum levels of F1-specific immunoglobulin A (IgA) in vaccinees. Overall, the general approach validated in the LPV model could be valuable for the rational design of vaccines against other neglected and novel emerging infections with high pandemic potency.

6.
Data Brief ; 29: 105190, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32071972

RESUMO

Chlamydiae are obligate intracellular bacteria globally widespread across humans, wildlife, and domesticated animals. Chlamydia psittaci is a primarily zoonotic pathogen with multiple hosts, which can be transmitted to humans, resulting in psittacosis or ornithosis. Since this pathogen is a well-recognized threat to human and animal health, it is critical to unravel in detail the genetic make-up of this microorganism. Though many genomes of C. psittaci have been studied to date, little is known about the variants of chlamydial organisms causing infection in Russian livestock. This research is the first de novo genome assembly of the C. psittaci strain Rostinovo-70 of zoonotic origin that was isolated in Russian Federation. The results were obtained by using standard protocols of sequencing with the Illumina HiSeq 2500 and Oxford Nanopore MinION technology that generated 3.88 GB and 3.08 GB of raw data, respectively. The data obtained are available in NCBI DataBase (GenBank accession numbers are CP041038.1 & CP041039.1). The Multi-Locus Sequence Typing (MLST) showed that the strain Rostinovo-70 together with C. psittaci GR9 and C. psittaci WS/RT/E30 belong to the sequence type (ST)28 that could be further separated into two different clades. Despite C. psittaci Rostinovo-70 and C. psittaci GR9 formed a single clade, the latter strain did not contain a cryptic plasmid characteristis to Rostinovo-70. Moreover, the genomes of two strains differed significantly in the cluster of 30 genes that in Rostinovo-70 were closer to Chlamydia abortus rather than C. psittaci. The alignment of the genomes of C. psittaci and C. abortus in this area revealed the exact boarders of homologous recombination that occurred between two Chlamydia species. These findings provide evidence for the first time of genetic exchange between closely related Chlamydia species.

7.
Microorganisms ; 7(7)2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31261812

RESUMO

Here, we present the first case of asymptomatic genital Chlamydial infection caused by the new emerging Chlamydia trachomatis (C.t.) ST13 strain genovar E, which has a double deletion of 377 bp and 17 bp in orf1 gene of the cryptic plasmid (ddCT). This case occurred in an infertile patient (case-patient) with a detectable level of Chlamydial antibodies and a spermatozoa deficiency known as azoospermia. Additionally, the ddCT strain showed the presence of a duplication of 44 bp in the plasmid orf3 and SNP in orf4, which were known as the typical characteristics of the Swedish variant of C.t. (nvCT) genovar E. Multilocus sequence typing (MLST) determined a significant difference between ddCT and nvCT in four alleles (oppA, hfiX, gitA and enoA). Both ddCT and nvCT were assigned to different genetic lineages and could be allocated to two different non-overlapping clonal complexes. Furthermore, ddCT demonstrated a considerable difference among 4-5 alleles in comparison with other C.t. strains of genovar E of ST4, ST8, ST12, and ST94, including the founder of a single relevant cluster, wtCT E/SW3 (Swedish genetic lineage). In contrast to other genovar E strains, ddCT had identical alleles with seven out of seven loci found in ST13 strains of genovars D and G, including the founder for this clonal group, D/UW-3/CX, and six out of seven loci found in its derivatives, such as ST6, ST10, and ST95 of genovars G and H. Nevertheless, MSTree V2 showed that ddCT and nvCT could have a common early ancestor, which is a parental C.t. G/9301 strain of ST9. A significant difference between ddCT and nvCT of genovar D (nvCT-D) that was recently found in Mexico was also determined as: (i) ddCT belonged to genovar E but not to genovar D; (ii) ddCT had a 44 bp duplication within the orf3 of the plasmid typical for nvCT; (iii) ddCT possessed an additional 17 bp deletion in the orf1. In conclusion, improved case management should include the clinical physician's awareness of the need to enhance molecular screening of asymptomatic Chlamydia patients. Such molecular diagnostics might be essential to significantly reducing the global burden of Chlamydial infection on international public health.

8.
Vaccines (Basel) ; 7(2)2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30974891

RESUMO

Omptins represent a family of proteases commonly found in various Gram-negative pathogens. These proteins play an important role in host-pathogen interaction and have been recognized as key virulence factors, highlighting the possibility of developing an omptin-based broad-spectrum vaccine. The prototypical omptin, His-tagged recombinant Pla, was used as a model target antigen. In total, 46 linear and 24 conformational epitopes for the omptin family were predicted by the use of ElliPro service. Among these we selected highly conserved, antigenic, non-allergenic, and immunogenic B-cell epitopes. Five epitopes (2, 6, 8, 10, and 11 corresponding to Pla regions 52-60, 146-150, 231-234, 286-295, and 306-311, respectively) could be the first choice for the development of the new generation of target-peptide-based vaccine against plague. The partial residues of omptin epitopes 6, 8, and 10 (regions 136-145, 227-230, and 274-285) could be promising targets for the multi-pathogen vaccine against a group of enterobacterial infections. The comparative analysis and 3D modeling of amino acid sequences of several omptin family proteases, such as Pla (Yersinia pestis), PgtE (Salmonella enterica), SopA (Shigella flexneri), OmpT, and OmpP (Escherichia coli), confirmed their high cross-homology with respect to the identified epitope clusters and possible involvement of individual epitopes in host-pathogen interaction.

9.
Int J Biol Macromol ; 122: 1062-1070, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30218736

RESUMO

The V antigen (LcrV) of the plague bacterium Yersinia pestis is a potent protective protein that is considered as a vaccine component for humans. LcrV mediates the delivery of Yop toxins into host cells and upregulates TLR2-dependent IL-10 production. Although LcrV can interact with the receptor-bound human interferon-γ (hIFN-γ), the significance of these interactions in plague pathogenesis is not known. In this study, we determined the parameters of specific interactions of LcrV and LcrV68-326 with primary human thymocytes and Jurkat T-leukemia cells in the presence of receptor-bound hIFN-γ. Although the C-terminal region of hIFN-γ contains a GRRA138-141 site needed for high-affinity binding of LcrV and LcrV68-326, in the hIFN-γ homodimer, these GRRA138-141 target sites becomes accessible for targeting by LcrV or LcrV68-326 only after immobilization of the hIFN-γ homodimer on the hIFN-γ receptors of thymocytes or Jurkat T-cells. The interaction of LcrV or LcrV68-326 with receptor-bound hIFN-γ on the thymocytes or Jurkat T-cells caused apoptosis of both cell types, which can be completely blocked by the addition of monoclonal antibodies specific to the LEEL32-35 and DEEI203-206 sites of LcrV. The ability of LcrV to utilize hIFN-γ is insidious and may account in part for the severe symptoms of plague in humans.


Assuntos
Anticorpos Monoclonais/imunologia , Especificidade de Anticorpos , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/metabolismo , Apoptose , Proteínas Citotóxicas Formadoras de Poros/imunologia , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Linfócitos T/citologia , Linfócitos T/metabolismo , Sequência de Aminoácidos , Antígenos de Bactérias/química , Humanos , Lactente , Células Jurkat , Modelos Moleculares , Proteínas Citotóxicas Formadoras de Poros/química , Ligação Proteica , Conformação Proteica
10.
Front Microbiol ; 9: 1106, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29887859

RESUMO

The established phylogeny of the etiological agent of plague, Yersinia pestis, is not perfect, as it does not take into account the strains from numerous natural foci of Commonwealth of Independent States (CIS). We have carried out PCR and SNP typing of 359 strains and whole genome sequencing of 51 strains from these plague foci and determined the phylogenetic diversity of the strains circulating here. They belong to 0.ANT3, 0.ANT5, 2.ANT3, 4.ANT branches of antique biovar, 2.MED0, 2.MED1 branches of medieval biovar and to 0.PE2, 0.PE4a. 0.PE4h, 0.PE4t branches. Based on the studies of 178 strains from 23 plague foci of CIS countries, it was determined that the population structure of 2.MED strains is subdivided into Caucasian-Caspian and Central Asian-Chinese branches. In Central-Caucasian high-mountain plague foci in the Russian Federation (RF) the most deeply diverged branch of medieval biovar, 2.MED0, has been found. With the data obtained, the current population structure of Y. pestis species has been refined. New subspecies classification is developed, comprising seven subspecies: pestis, caucasica (0.PE2), angolica (0.PE3), central asiatica (0.PE4), tibetica (0.PE7), ulegeica (0.PE5), and qinghaica (0.PE10).

11.
PLoS Negl Trop Dis ; 12(6): e0006511, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29889829

RESUMO

BACKGROUND: To establish correlates of human immunity to the live plague vaccine (LPV), we analyzed parameters of cellular and antibody response to the plasminogen activator Pla of Y. pestis. This outer membrane protease is an essential virulence factor that is steadily expressed by Y. pestis. METHODOLOGY/PRINCIPAL FINDINGS: PBMCs and sera were obtained from a cohort of naïve (n = 17) and LPV-vaccinated (n = 34) donors. Anti-Pla antibodies of different classes and IgG subclasses were determined by ELISA and immunoblotting. The analysis of antibody response was complicated with a strong reactivity of Pla with normal human sera. The linear Pla B-cell epitopes were mapped using a library of 15-mer overlapping peptides. Twelve peptides that reacted specifically with sera of vaccinated donors were found together with a major cross-reacting peptide IPNISPDSFTVAAST located at the N-terminus. PBMCs were stimulated with recombinant Pla followed by proliferative analysis and cytokine profiling. The T-cell recall response was pronounced in vaccinees less than a year post-immunization, and became Th17-polarized over time after many rounds of vaccination. CONCLUSIONS/SIGNIFICANCE: The Pla protein can serve as a biomarker of successful vaccination with LPV. The diagnostic use of Pla will require elimination of cross-reactive parts of the antigen.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Imunidade Celular , Imunidade Humoral , Vacina contra a Peste/imunologia , Ativadores de Plasminogênio/imunologia , Yersinia pestis/imunologia , Adulto , Idoso , Biomarcadores/sangue , Citocinas/biossíntese , Citocinas/imunologia , Epitopos de Linfócito B/imunologia , Feminino , Humanos , Imunoglobulina G/sangue , Masculino , Pessoa de Meia-Idade , Peste/sangue , Peste/imunologia , Peste/microbiologia , Peste/prevenção & controle , Células Th17/imunologia , Vacinação , Vacinas Vivas não Atenuadas/administração & dosagem , Vacinas Vivas não Atenuadas/imunologia , Fatores de Virulência
12.
PLoS One ; 13(4): e0195386, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29641543

RESUMO

BACKGROUND: This is the first report to characterize the prevalence and genovar distribution of genital chlamydial infections among random heterosexual patients in the multi-ethnic Saratov Region, located in Southeast Russia. METHODS: Sixty-one clinical samples (cervical or urethral swabs) collected from a random cohort of 856 patients (7.1%) were C. trachomatis (CT) positive in commercial nucleic acid amplification tests (NAATs) and duplex TaqMan PCRs. RESULTS: Sequence analysis of the VDII region of the ompA gene revealed seven genovars of C. trachomatis in PCR-positive patients. The overall genovars were distributed as E (41.9%), G (21.6%), F (13.5%), K (9.5%), D (6.8%), J (4.1%), and H (2.7%). CT-positive samples were from males (n = 12, 19.7%), females (n = 42, 68.8%), and anonymous (n = 7, 11.5%) patients, with an age range of 19 to 45 years (average 26.4), including 12 different ethnic groups representative of this region. Most patients were infected with a single genovar (82%), while 18% were co-infected with either two or three genovars. The 1156 bp-fragment of the ompA gene was sequenced in 46 samples to determine single nucleotide polymorphisms (SNP) among isolates. SNP-based subtyping and phylogenetic reconstruction revealed the presence of 13 variants of the ompA gene, such as E (E1, E2, E6), G (G1, G2, G3, G5), F1, K, D (D1, Da2), J1, and H2. Differing genovar distribution was identified among urban (E>G>F) and rural (E>K) populations, and in Slavic (E>G>D) and non-Slavic (E>G>K) ethnic groups. Multilocus sequence typing (MLST) determined five sequences types (STs), such as ST4 (56%, 95% confidence interval, CI, 70.0 to 41.3), ST6 (10%, 95% CI 21.8 to 3.3), ST9 (22%, 95% CI 35.9 to 11.5), ST10 (2%, 95% CI 10.7 to 0.05) and ST38 (10%, 95% CI 21.8 to 3.3). Thus, the most common STs were ST4 and ST9. CONCLUSION: C. trachomatis is a significant cause of morbidity among random heterosexual patients with genital chlamydial infections in the Saratov Region. Further studies should extend this investigation by describing trends in a larger population, both inside and outside of the Saratov Region to clarify some aspects for the actual application of C. trachomatis genotype analysis for disease control.


Assuntos
Infecções por Chlamydia/epidemiologia , Chlamydia trachomatis/classificação , Chlamydia trachomatis/fisiologia , Etnicidade , Tipagem de Sequências Multilocus , Sistema Urogenital/microbiologia , Adolescente , Adulto , Proteínas da Membrana Bacteriana Externa/genética , Infecções por Chlamydia/etnologia , Chlamydia trachomatis/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prevalência , Federação Russa/epidemiologia , Federação Russa/etnologia , Adulto Jovem
13.
mSphere ; 1(6)2016.
Artigo em Inglês | MEDLINE | ID: mdl-27981238

RESUMO

The Enterobacteriaceae family members, including the infamous Yersinia pestis, the causative agent of plague, have a highly conserved interbacterial signaling system that is mediated by the autoinducer-2 (AI-2) quorum-sensing molecule. The AI-2 system is implicated in regulating various bacterial virulence genes in diverse environmental niches. Deletion of the gene encoding the synthetic enzyme for the AI-2 substrate, luxS, leads to either no significant change or, paradoxically, an increase in in vivo bacterial virulence. We showed that deletion of the rbsA and lsrA genes, components of ABC transport systems that interact with AI-2, synergistically disrupted AI-2 signaling patterns and resulted in a more-than-50-fold decrease in Y. pestis strain CO92 virulence in a stringent pneumonic plague mouse model. Deletion of luxS or lsrK (encoding AI-2 kinase) from the ΔrbsA ΔlsrA background strain or complementation of the ΔrbsA ΔlsrA mutant with the corresponding gene(s) reverted the virulence phenotype to that of the wild-type Y. pestis CO92. Furthermore, the administration of synthetic AI-2 in mice infected with the ΔrbsA ΔlsrA ΔluxS mutant strain attenuated this triple mutant to a virulence phenotype similar to that of the ΔrbsA ΔlsrA strain in a pneumonic plague model. Conversely, the administration of AI-2 to mice infected with the ΔrbsA ΔlsrA ΔluxS ΔlsrK mutant did not rescue animals from lethality, indicating the importance of the AI-2-LsrK axis in regulating bacterial virulence. By performing high-throughput RNA sequencing, the potential role of some AI-2-signaling-regulated genes that modulated bacterial virulence was determined. We anticipate that the characterization of AI-2 signaling in Y. pestis will lead to reexamination of AI-2 systems in other pathogens and that AI-2 signaling may represent a broad-spectrum therapeutic target to combat antibiotic-resistant bacteria, which represent a global crisis of the 21st century. IMPORTANCEYersinia pestis is the bacterial agent that causes the highly fatal disease plague. The organism represents a significant concern because of its potential use as a bioterror agent, beyond the several thousand naturally occurring human infection cases occurring globally each year. While there has been development of effective antibiotics, the narrow therapeutic window and challenges posed by the existence of antibiotic-resistant strains represent serious concerns. We sought to identify novel virulence factors that could potentially be incorporated into an attenuated vaccine platform or be targeted by novel therapeutics. We show here that a highly conserved quorum-sensing system, autoinducer-2, significantly affected the virulence of Y. pestis in a mouse model of pneumonic plague. We also identified steps in autoinducer-2 signaling which had confounded previous studies and demonstrated the potential for intervention in the virulence mechanism(s) of autoinducer-2. Our findings may have an impact on bacterial pathogenesis research in many other organisms and could result in identifying potential broad-spectrum therapeutic targets to combat antibiotic-resistant bacteria, which represent a global crisis of the 21st century.

14.
PLoS One ; 11(12): e0168089, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27936190

RESUMO

It has been shown previously that several endemic Y. pestis isolates with limited virulence contained the I259 isoform of the outer membrane protease Pla, while the epidemic highly virulent strains possessed only the T259 Pla isoform. Our sequence analysis of the pla gene from 118 Y. pestis subsp. microtus strains revealed that the I259 isoform was present exclusively in the endemic strains providing a convictive evidence of more ancestral origin of this isoform. Analysis of the effects of the I259T polymorphism on the intrinsic disorder propensity of Pla revealed that the I259T mutation slightly increases the intrinsic disorder propensity of the C-terminal tail of Pla and makes this protein slightly more prone for disorder-based protein-protein interactions, suggesting that the T259 Pla could be functionally more active than the I259 Pla. This assumption was proven experimentally by assessing the coagulase and fibrinolytic activities of the two Pla isoforms in human plasma, as well as in a direct fluorometric assay with the Pla peptide substrate. The virulence testing of Pla-negative or expressing the I259 and T259 Pla isoforms Y. pestis subsp. microtus and subsp. pestis strains did not reveal any significant difference in LD50 values and dose-dependent survival assays between them by using a subcutaneous route of challenge of mice and guinea pigs or intradermal challenge of mice. However, a significant decrease in time-to-death was observed in animals infected with the epidemic T259 Pla-producing strains as compared to the parent Pla-negative variants. Survival curves of the endemic I259 Pla+ strains fit between them, but significant difference in mean time to death post infection between the Pla-strains and their I259 Pla+ variants could be seen only in the isogenic set of subsp. pestis strains. These findings suggest an essential role for the outer membrane protease Pla evolution in Y. pestis bubonic infection exacerbation that is necessary for intensification of epidemic process from endemic natural focality with sporadic cases in men to rapidly expanding epizootics followed by human epidemic outbreaks, local epidemics or even pandemics.


Assuntos
Proteínas de Bactérias/metabolismo , Isoenzimas/metabolismo , Ativadores de Plasminogênio/metabolismo , Yersinia pestis/enzimologia , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/química , Feminino , Cobaias , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Ativadores de Plasminogênio/química , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Virulência , Yersinia pestis/patogenicidade
15.
Adv Exp Med Biol ; 918: 257-272, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27722866

RESUMO

As omics-driven technologies developed rapidly, genomics, transcriptomics, proteomics, metabolomics and other omics-based data have been accumulated in unprecedented speed. Omics-driven big data in biology have changed our way of research. "Big science" has promoted our understanding of biology in a holistic overview that is impossibly achieved by traditional hypothesis-driven research. In this chapter, we gave an overview of omics-driven research on Y. pestis, provided a way of thinking on Yersinia pestis research in the age of big data, and made some suggestions to integrate omics-based data for systems understanding of Y. pestis.


Assuntos
Biologia Computacional , Yersinia pestis/fisiologia , Animais , Genômica , Humanos , Metabolômica , Proteômica , Pesquisa , Yersinia pestis/genética , Zoonoses
16.
Clin Vaccine Immunol ; 23(7): 586-600, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27170642

RESUMO

Currently, no plague vaccine exists in the United States for human use. The capsular antigen (Caf1 or F1) and two type 3 secretion system (T3SS) components, the low-calcium-response V antigen (LcrV) and the needle protein YscF, represent protective antigens of Yersinia pestis We used a replication-defective human type 5 adenovirus (Ad5) vector and constructed recombinant monovalent and trivalent vaccines (rAd5-LcrV and rAd5-YFV) that expressed either the codon-optimized lcrV or the fusion gene designated YFV (consisting of ycsF, caf1, and lcrV). Immunization of mice with the trivalent rAd5-YFV vaccine by either the intramuscular (i.m.) or the intranasal (i.n.) route provided protection superior to that with the monovalent rAd5-LcrV vaccine against bubonic and pneumonic plague when animals were challenged with Y. pestis CO92. Preexisting adenoviral immunity did not diminish the protective response, and the protection was always higher when mice were administered one i.n. dose of the trivalent vaccine (priming) followed by a single i.m. booster dose of the purified YFV antigen. Immunization of cynomolgus macaques with the trivalent rAd5-YFV vaccine by the prime-boost strategy provided 100% protection against a stringent aerosol challenge dose of CO92 to animals that had preexisting adenoviral immunity. The vaccinated and challenged macaques had no signs of disease, and the invading pathogen rapidly cleared with no histopathological lesions. This is the first report showing the efficacy of an adenovirus-vectored trivalent vaccine against pneumonic plague in mouse and nonhuman primate (NHP) models.


Assuntos
Adenovírus Humanos/genética , Portadores de Fármacos , Vacina contra a Peste/imunologia , Peste/prevenção & controle , Administração Intranasal , Animais , Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Modelos Animais de Doenças , Feminino , Esquemas de Imunização , Injeções Intramusculares , Interferon gama/metabolismo , Macaca fascicularis , Masculino , Camundongos , Peste/patologia , Vacina contra a Peste/administração & dosagem , Vacina contra a Peste/genética , Análise de Sobrevida , Linfócitos T/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Replicação Viral , Yersinia pestis/genética , Yersinia pestis/imunologia
17.
Methods Mol Biol ; 1403: 487-98, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27076149

RESUMO

Since its creation in the early twentieth century, live plague vaccine EV has been successfully applied to millions of people without severe complications. This vaccine has been proven to elicit protection against both bubonic and pneumonic plague, and it is still in use in populations at risk mainly in the countries of the former Soviet Union. Despite extensive efforts in developing subunit vaccines, there is a reviving interest in creation of a precisely attenuated strain of Yersinia pestis superior to the EV that can serve as a live plague vaccine with improved characteristics. Here we summarize decades of experience of the Russian anti-plague research in developing a standard protocol for early-stage evaluation of safety and immunogenicity of live plague vaccines. This protocol allows step-by-step comparison of the novel test candidates with the EV vaccine by using subcutaneous immunization and bubonic plague infection models in two animal species, e.g., guinea pigs and mice.


Assuntos
Vacina contra a Peste/imunologia , Yersinia pestis/imunologia , Animais , Feminino , Cobaias , Masculino , Camundongos , Virulência , Yersinia pestis/patogenicidade
18.
Antimicrob Agents Chemother ; 60(6): 3717-29, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27067323

RESUMO

Antibiotic resistance in medically relevant bacterial pathogens, coupled with a paucity of novel antimicrobial discoveries, represents a pressing global crisis. Traditional drug discovery is an inefficient and costly process; however, systematic screening of Food and Drug Administration (FDA)-approved therapeutics for other indications in humans offers a rapid alternative approach. In this study, we screened a library of 780 FDA-approved drugs to identify molecules that rendered RAW 264.7 murine macrophages resistant to cytotoxicity induced by the highly virulent Yersinia pestis CO92 strain. Of these compounds, we identified 94 not classified as antibiotics as being effective at preventing Y. pestis-induced cytotoxicity. A total of 17 prioritized drugs, based on efficacy in in vitro screens, were chosen for further evaluation in a murine model of pneumonic plague to delineate if in vitro efficacy could be translated in vivo Three drugs, doxapram (DXP), amoxapine (AXPN), and trifluoperazine (TFP), increased animal survivability despite not exhibiting any direct bacteriostatic or bactericidal effect on Y. pestis and having no modulating effect on crucial Y. pestis virulence factors. These findings suggested that DXP, AXPN, and TFP may modulate host cell pathways necessary for disease pathogenesis. Finally, to further assess the broad applicability of drugs identified from in vitro screens, the therapeutic potential of TFP, the most efficacious drug in vivo, was evaluated in murine models of Salmonella enterica serovar Typhimurium and Clostridium difficile infections. In both models, TFP treatment resulted in increased survivability of infected animals. Taken together, these results demonstrate the broad applicability and potential use of nonantibiotic FDA-approved drugs to combat respiratory and gastrointestinal bacterial pathogens.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Reposicionamento de Medicamentos , Enterocolite Pseudomembranosa/tratamento farmacológico , Peste/tratamento farmacológico , Infecções por Salmonella/tratamento farmacológico , Trifluoperazina/farmacologia , Amoxapina/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Clostridioides difficile/efeitos dos fármacos , Clostridioides difficile/crescimento & desenvolvimento , Clostridioides difficile/patogenicidade , Modelos Animais de Doenças , Doxapram/farmacologia , Esquema de Medicação , Enterocolite Pseudomembranosa/metabolismo , Enterocolite Pseudomembranosa/microbiologia , Enterocolite Pseudomembranosa/mortalidade , Feminino , Ensaios de Triagem em Larga Escala , Macrófagos/efeitos dos fármacos , Camundongos , Peste/metabolismo , Peste/microbiologia , Peste/mortalidade , Medicamentos sob Prescrição/farmacologia , Infecções por Salmonella/metabolismo , Infecções por Salmonella/microbiologia , Infecções por Salmonella/mortalidade , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/crescimento & desenvolvimento , Salmonella typhimurium/patogenicidade , Bibliotecas de Moléculas Pequenas/farmacologia , Análise de Sobrevida , Yersinia pestis/efeitos dos fármacos , Yersinia pestis/crescimento & desenvolvimento , Yersinia pestis/patogenicidade
19.
PLoS One ; 11(3): e0150166, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27015536

RESUMO

Yersinia pestis enters host cells and evades host defenses, in part, through interactions between Yersinia pestis proteins and host membranes. One such interaction is through the type III secretion system, which uses a highly conserved and ordered complex for Yersinia pestis outer membrane effector protein translocation called the injectisome. The portion of the injectisome that interacts directly with host cell membranes is referred to as the translocon. The translocon is believed to form a pore allowing effector molecules to enter host cells. To facilitate mechanistic studies of the translocon, we have developed a cell-free approach for expressing translocon pore proteins as a complex supported in a bilayer membrane mimetic nano-scaffold known as a nanolipoprotein particle (NLP) Initial results show cell-free expression of Yersinia pestis outer membrane proteins YopB and YopD was enhanced in the presence of liposomes. However, these complexes tended to aggregate and precipitate. With the addition of co-expressed (NLP) forming components, the YopB and/or YopD complex was rendered soluble, increasing the yield of protein for biophysical studies. Biophysical methods such as Atomic Force Microscopy and Fluorescence Correlation Spectroscopy were used to confirm that the soluble YopB/D complex was associated with NLPs. An interaction between the YopB/D complex and NLP was validated by immunoprecipitation. The YopB/D translocon complex embedded in a NLP provides a platform for protein interaction studies between pathogen and host proteins. These studies will help elucidate the poorly understood mechanism which enables this pathogen to inject effector proteins into host cells, thus evading host defenses.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Lipoproteínas/metabolismo , Nanopartículas/metabolismo , Proteínas da Membrana Bacteriana Externa/biossíntese , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/ultraestrutura , Fenômenos Biofísicos , Regulação da Expressão Gênica , Lipoproteínas/química , Lipoproteínas/ultraestrutura , Microscopia de Força Atômica , Complexos Multiproteicos/ultraestrutura , Nanopartículas/química , Nanopartículas/ultraestrutura , Yersinia pestis/genética , Yersinia pestis/metabolismo
20.
Protein Pept Lett ; 23(4): 379-85, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26845766

RESUMO

Antibiotic therapy of plague is hampered by the recent isolation of Yersinia pestis strain resistant to all of antibiotics recommended for cure. This has constrained a quest for new antimicrobials taking aim at alternative targets. Recently Y. pestis cysteine protease YopT has been explored as a potential drug target. Targets conserved in the pathogen populations should be more efficacious; therefore, we evaluated intraspecies variability in yopT genes and their products. 114 Y. pestis isolates were screened. Only two YopT full-size isoforms were found among them. The endemic allele (N149) was present in biovar caucasica from Dagestan-highland natural plague focus # 39. The biovar caucasica strains from Transcaucasian highland (# 4-6) and Pre-Araks (# 7) plague foci also contained the N149 allele. These strains from foci # 4 7 possessed a truncated version of YopT that was a consequence of a frame-shift due to the deletion of a single nucleotide at position 71 bp. Computational analyses showed that although the SNP at the position 149 has a very minimal effect of the intrinsic disorder propensity of YopT proteins, whereas the N-terminal truncations of the YopT detected in bv. caucasica strains Pestoides F_YopT1 and F_YopT2, and Pestoides G generated isoforms with the significantly modified intrinsic disorder propensities and with reduced capability to interact with lost ability to utilize their N-terminal tail for the disorder-based interactions with biological partners. Considering that representatives of biovar caucasica were reported to be the reason of sporadic cases of human plague, this study supports the necessity of additional testing of globally disseminated YopT (S149) isoform as a potential target for treatment of plague caused by the strains producing different YopT isoforms.


Assuntos
Proteínas de Bactérias/genética , Cisteína Endopeptidases/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Peste/microbiologia , Polimorfismo de Nucleotídeo Único , Yersinia pestis/isolamento & purificação , Alelos , Sequência de Aminoácidos , Proteínas de Bactérias/química , Sítios de Ligação , Biologia Computacional/métodos , Cisteína Endopeptidases/química , Humanos , Filogenia , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Yersinia pestis/classificação , Yersinia pestis/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA