Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Curr Eye Res ; : 1-9, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38666493

RESUMO

PURPOSE: To assess the safety and feasibility of direct vitrectomy-sparing subretinal injection for gene delivery in a large animal model. METHODS: The experimental Libechov minipigs were used for subretinal delivery of a plasmid DNA vector (pS/MAR-CMV-copGFP) with cytomegalovirus (CMV) promoter, green fluorescent protein (GFP) reporter (copGFP) and a scaffold/matrix attachment region (S/MAR) sequence. The eyes were randomized to subretinal injection of the vector following pars plana vitrectomy (control group) or a direct injection without prior vitrectomy surgery (experimental group). Intra- and post-operative observations up to 30 days after surgery were compared. RESULTS: Six eyes of three mini-pigs underwent surgery for delivery into the subretinal space. Two eyes in the control group were operated with a classical approach (lens-sparing vitrectomy and posterior hyaloid detachment). The other four eyes in the experimental group were injected directly with a subretinal cannula without vitrectomy surgery. No adverse events, such as endophthalmitis, retinal detachment and intraocular pressure elevation were observed post-operatively. The eyes in the experimental group had both shorter surgical time and recovery while achieving the same surgical goal. CONCLUSIONS: This pilot study demonstrates that successful subretinal delivery of gene therapy vectors is achievable using a direct injection without prior vitrectomy surgery.

2.
Stem Cells Transl Med ; 12(8): 536-552, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37459045

RESUMO

Retinal pigment epithelium (RPE) is a critical cell monolayer forming the blood-retina-barrier (BRB) and a permeable bridge between the choriocapillaris and the retina. RPE is also crucial in maintaining photoreceptor function and for completing the visual cycle. Loss of the RPE is associated with the development of degenerative diseases like age-related macular degeneration (AMD). To treat diseases like AMD, pluripotent stem cell-derived RPE (pRPE) has been recently explored extensively as a regenerative module. pRPE like other ectodermal tissues requires specific lineage differentiation and long-term in vitro culturing for maturation. Therefore, understanding the differentiation process of RPE could be useful for stem cell-based RPE derivation. Developing pRPE-based transplants and delivering them into the subretinal space is another aspect that has garnered interest in the last decade. In this review, we discuss the basic strategies currently employed for stem cell-based RPE derivation, their delivery, and recent clinical studies related to pRPE transplantation in patients. We have also discussed a few limitations with in vitro RPE culture and potential solutions to overcome such problems which can be helpful in developing functional RPE tissue.


Assuntos
Degeneração Macular , Células-Tronco Pluripotentes , Humanos , Epitélio Pigmentado da Retina/metabolismo , Retina , Degeneração Macular/terapia , Degeneração Macular/metabolismo , Diferenciação Celular
3.
Nucleic Acid Ther ; 33(3): 226-232, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36857739

RESUMO

Stargardt disease (STGD) leads to blindness in children and young adults. So far, no curative therapy is available and gene augmentation therapies have not yet advanced to the clinics, in part, due to the limited packaging capacity of adeno-associated viruses used to transfer genes into photoreceptor cells. Prime editing offers a new perspective to treat mutations on the genomic level. A nicking variant of Cas9 fused to a reverse transcriptase complex with an elongated guideRNA force intracellular mismatch repair to correct the targeted mutation even in postmitotic cells such as photoreceptors in the eye. Using a custom-made bioluminescence resonance energy transfer (BRET)-based editing sensor in HEK293 cells, we tested 27 different prime editing guide RNAs (pegRNAs) and additional 4 nicking guide RNAs (ngRNAs) with regard to their efficiency to induce sequences changes in exon 43 of the porcine ATP binding cassette subfamily A member 4 (ABCA4) gene that eliminate a mutagenic adenine frameshift insertion, which has been associated with STGD in humans. We identified nine working pegRNAs, and in combination with ngRNAs, we achieved a correction rate of up to ≈92% measured with the BRET-based reporter system. Our data prove the high efficiency of prime editors to correct mutations and highlight the importance of optimal ngRNA design, thus offering a promising editing tool to correct ABCA4 mutations in the disease context.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Criança , Adulto Jovem , Humanos , Animais , Suínos , Células HEK293 , Transportadores de Cassetes de Ligação de ATP/genética , Doença de Stargardt/genética , Mutação , Transferência de Energia
4.
Biomedicines ; 11(2)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36830851

RESUMO

The retinal pigment epithelium (RPE) forms an important cellular monolayer, which contributes to the normal physiology of the eye. Damage to the RPE leads to the development of degenerative diseases, such as age-related macular degeneration (AMD). Apart from acting as a physical barrier between the retina and choroidal blood vessels, the RPE is crucial in maintaining photoreceptor (PR) and visual functions. Current clinical intervention to treat early stages of AMD includes stem cell-derived RPE transplantation, which is still in its early stages of evolution. Therefore, it becomes essential to derive RPEs which are functional and exhibit features as observed in native human RPE cells. The conventional strategy is to use the knowledge obtained from developmental studies using various animal models and stem cell-based exploratory studies to understand RPE biogenies and developmental trajectory. This article emphasises such studies and aims to present a comprehensive understanding of the basic biology, including the genetics and molecular pathways of RPE development. It encompasses basic developmental biology and stem cell-based developmental studies to uncover RPE differentiation. Knowledge of the in utero developmental cues provides an inclusive methodology required for deriving RPEs using stem cells.

5.
J Vis Exp ; (189)2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36440839

RESUMO

Degenerative disorders of the retina (including age-related macular degeneration), which originate primarily at or within the retinal pigmented epithelial (RPE) layer, lead to a progressive disorganization of the retinal anatomy and the deterioration of visual function. The substitution of damaged RPE cells (RPEs) with in vitro cultured RPE cells using a subretinal cell carrier has shown potential for re-establishing the anatomical structure of the outer retinal layers and is, therefore, being further studied. Here, we present the principles of a surgical technique that allows for the effective subretinal transplantation of a cell carrier with cultivated RPEs into minipigs. The surgeries were performed under general anesthesia and included a standard lens-sparing three-port pars plana vitrectomy (PPV), subretinal application of a balanced salt solution (BSS), a 2.7 mm retinotomy, implantation of a nanofibrous cell carrier into the subretinal space through an additional 3.0 mm sclerotomy, fluid-air exchange (FAX), silicone oil tamponade, and closure of all the sclerotomies. This surgical approach was used in 29 surgeries (18 animals) over the past 8 years with a success rate of 93.1%. Anatomic verification of the surgical placement was carried out using in vivo fundus imaging (fundus photography and optical coherence tomography). The recommended surgical steps for the subretinal implantation of RPEs on a carrier in minipig eyes can be used in future preclinical studies using large-eye animal models.


Assuntos
Epitélio Pigmentado da Retina , Vitrectomia , Humanos , Animais , Suínos , Porco Miniatura , Cuidados Pós-Operatórios , Vitrectomia/métodos , Epitélio Pigmentado da Retina/cirurgia , Retina/cirurgia
6.
Biomolecules ; 12(10)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36291741

RESUMO

Purpose: Retinal ischemia (RI) and progressive neuronal death are sight-threatening conditions. Mitochondrial (mt) dysfunction and fusion/fission processes have been suggested to play a role in the pathophysiology of RI. This study focuses on changes in the mt parameters of the neuroretina, retinal pigment epithelium (RPE) and choroid in a porcine high intraocular pressure (IOP)-induced RI minipig model. Methods: In one eye, an acute IOP elevation was induced in minipigs and compared to the other control eye. Activity and amount of respiratory chain complexes (RCC) were analyzed by spectrophotometry and Western blot, respectively. The coenzyme Q10 (CoQ10) content was measured using HPLC, and the ultrastructure of the mt was studied via transmission electron microscopy. The expression of selected mt-pathway genes was determined by RT-PCR. Results: At a functional level, increased RCC I activity and decreased total CoQ10 content were found in RPE cells. At a protein level, CORE2, a subunit of RCC III, and DRP1, was significantly decreased in the neuroretina. Drp1 and Opa1, protein-encoding genes responsible for mt quality control, were decreased in most of the samples from the RPE and neuroretina. Conclusions: The eyes of the minipig can be considered a potential RI model to study mt dysfunction in this disease. Strategies targeting mt protection may provide a promising way to delay the acute damage and onset of RI.


Assuntos
Carcinoma de Células Renais , Glaucoma , Neoplasias Renais , Animais , Suínos , Pressão Intraocular , Porco Miniatura , Carcinoma de Células Renais/metabolismo , Glaucoma/metabolismo , Neoplasias Renais/metabolismo , Mitocôndrias/metabolismo , Isquemia/metabolismo
7.
Mol Ther ; 30(8): 2722-2745, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35524407

RESUMO

Second-order spinal cord excitatory neurons play a key role in spinal processing and transmission of pain signals to the brain. Exogenously induced change in developmentally imprinted excitatory neurotransmitter phenotypes of these neurons to inhibitory has not yet been achieved. Here, we use a subpial dorsal horn-targeted delivery of AAV (adeno-associated virus) vector(s) encoding GABA (gamma-aminobutyric acid) synthesizing-releasing inhibitory machinery in mice with neuropathic pain. Treated animals showed a progressive and complete reversal of neuropathic pain (tactile and brush-evoked pain behavior) that persisted for a minimum of 2.5 months post-treatment. The mechanism of this treatment effect results from the switch of excitatory to preferential inhibitory neurotransmitter phenotype in dorsal horn nociceptive neurons and a resulting increase in inhibitory activity in regional spinal circuitry after peripheral nociceptive stimulation. No detectable side effects (e.g., sedation, motor weakness, loss of normal sensation) were seen between 2 and 13 months post-treatment in naive adult mice, pigs, and non-human primates. The use of this treatment approach may represent a potent and safe treatment modality in patients suffering from spinal cord or peripheral nerve injury-induced neuropathic pain.


Assuntos
Neuralgia , Nociceptores , Animais , Técnicas de Transferência de Genes , Camundongos , Neuralgia/etiologia , Neuralgia/terapia , Células do Corno Posterior , Medula Espinal , Corno Dorsal da Medula Espinal , Suínos
8.
EMBO Mol Med ; 14(4): e14817, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35254721

RESUMO

Usher syndrome (USH) is the most common form of monogenic deaf-blindness. Loss of vision is untreatable and there are no suitable animal models for testing therapeutic strategies of the ocular constituent of USH, so far. By introducing a human mutation into the harmonin-encoding USH1C gene in pigs, we generated the first translational animal model for USH type 1 with characteristic hearing defect, vestibular dysfunction, and visual impairment. Changes in photoreceptor architecture, quantitative motion analysis, and electroretinography were characteristics of the reduced retinal virtue in USH1C pigs. Fibroblasts from USH1C pigs or USH1C patients showed significantly elongated primary cilia, confirming USH as a true and general ciliopathy. Primary cells also proved their capacity for assessing the therapeutic potential of CRISPR/Cas-mediated gene repair or gene therapy in vitro. AAV-based delivery of harmonin into the eye of USH1C pigs indicated therapeutic efficacy in vivo.


Assuntos
Síndromes de Usher , Animais , Proteínas de Ciclo Celular/genética , Proteínas do Citoesqueleto , Humanos , Células Fotorreceptoras , Suínos , Síndromes de Usher/genética , Síndromes de Usher/metabolismo , Síndromes de Usher/terapia
9.
Biomedicines ; 10(3)2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35327471

RESUMO

PURPOSE: The development of primary human retinal pigmented epithelium (hRPE) for clinical transplantation purposes on biodegradable scaffolds is indispensable. We hereby report the results of the subretinal implantation of hRPE cells on nanofibrous membranes in minipigs. METHODS: The hRPEs were collected from human cadaver donor eyes and cultivated on ultrathin nanofibrous carriers prepared via the electrospinning of poly(L-lactide-co-DL-lactide) (PDLLA). "Libechov" minipigs (12-36 months old) were used in the study, supported by preoperative tacrolimus immunosuppressive therapy. The subretinal implantation of the hRPE-nanofibrous carrier was conducted using general anesthesia via a custom-made injector during standard three-port 23-gauge vitrectomy, followed by silicone oil endotamponade. The observational period lasted 1, 2, 6 and 8 weeks, and included in vivo optical coherence tomography (OCT) of the retina, as well as post mortem immunohistochemistry using the following antibodies: HNAA and STEM121 (human cell markers); Bestrophin and CRALBP (hRPE cell markers); peanut agglutining (PNA) (cone photoreceptor marker); PKCα (rod bipolar marker); Vimentin, GFAP (macroglial markers); and Iba1 (microglial marker). RESULTS: The hRPEs assumed cobblestone morphology, persistent pigmentation and measurable trans-epithelial electrical resistance on the nanofibrous PDLLA carrier. The surgical delivery of the implants in the subretinal space of the immunosuppressed minipigs was successfully achieved and monitored by fundus imaging and OCT. The implanted hRPEs were positive for HNAA and STEM121 and were located between the minipig's neuroretina and RPE layers at week 2 post-implantation, which was gradually attenuated until week 8. The neuroretina over the implants showed rosette or hypertrophic reaction at week 6. The implanted cells expressed the typical RPE marker bestrophin throughout the whole observation period, and a gradual diminishing of the CRALBP expression in the area of implantation at week 8 post-implantation was observed. The transplanted hRPEs appeared not to form a confluent layer and were less capable of keeping the inner and outer retinal segments intact. The cone photoreceptors adjacent to the implant scaffold were unchanged initially, but underwent a gradual change in structure after hRPE implantation; the retina above and below the implant appeared relatively healthy. The glial reaction of the transplanted and host retina showed Vimentin and GFAP positivity from week 1 onward. Microglial activation appeared in the retinal area of the transplant early after the surgery, which seemed to move into the transplant area over time. CONCLUSIONS: The differentiated hRPEs can serve as an alternative cell source for RPE replacement in animal studies. These cells can be cultivated on nanofibrous PDLLA and implanted subretinally into minipigs using standard 23-gauge vitrectomy and implantation injector. The hRPE-laden scaffolds demonstrated relatively good incorporation into the host retina over an eight-week observation period, with some indication of a gliotic scar formation, and a likely neuroinflammatory response in the transplanted area despite the use of immunosuppression.

10.
Acta Ophthalmol ; 100(5): e1172-e1185, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34687141

RESUMO

PURPOSE: Dysfunction of the retinal pigment epithelium (RPE) causes numerous forms of retinal degeneration. RPE replacement is a modern option to save vision. We aimed to test the results of transplanting cultured RPEs on biocompatible membranes. METHODS: We cultivated porcine primary RPE cells isolated from cadaver eyes from the slaughterhouse on two types of membranes: commercial polyester scaffolds Transwell (Corning Inc., Kenneburg, ME, USA) with 0.4 µm pore size and prepared Poly (L-lactide-co-DL-lactide) (PDLLA) nanofibrous membranes with an average pore size of 0.4 µm. RESULTS: Five types of assays were used for the analysis: immunocytochemistry (ICC), phagocytosis assay, Western blotting, real-time qPCR (RT-qPCR) and electron microscopy. RT-qPCR demonstrated that RPEs cultured on nanofibrous membranes have higher expressions of BEST1 (bestrophin 1), RLBP1 (retinaldehyde-binding protein 1), RPE65 (retinal pigment epithelium-specific 65 kDa protein), PAX6 (transcription factor PAX6), SOX9 (transcription factor SOX9), DCT (dopachrome tautomerase) and MITF (microphthalmia-associated transcription factor). ICC of the RPEs cultured on nanofibrous membranes showed more intensive staining of markers such as BEST1, MCT1 (monocarboxylate transporter 1), Na+ /K+ ATPase, RPE65 and acetylated tubulin in comparison with commercial ones. Additionally, the absence of α-SMA proved the stability of the RPE polarization state and the absence of epithelial-to-mesenchymal transition. RPE possessed high phagocytic activity. Electron microscopy of both membranes confirmed a confluent layer of RPE cells and their genuine morphological structure, which was comparable to native RPEs. CONCLUSIONS: Retinal pigment epitheliums cultured on polylactide nanofibrous membranes improved the final quality of the cell product by having better maturation and long-term survival of the RPE monolayer compared to those cultured on commercial polyester scaffolds. PDLLA-cultured RPEs are a plausible source for the replacement of non-functioning RPEs during cell therapy.


Assuntos
Nanofibras , Degeneração Retiniana , Animais , Bestrofinas/metabolismo , Células Cultivadas , Nanofibras/química , Poliésteres/metabolismo , Degeneração Retiniana/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Suínos
11.
Biol Open ; 10(8)2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34357391

RESUMO

Human multipotent neural stem cells could effectively be used for the treatment of a variety of neurological disorders. However, a defining signature of neural stem cell lines that would be expandable, non-tumorigenic, and differentiate into desirable neuronal/glial phenotype after in vivo grafting is not yet defined. Employing a mass spectrometry approach, based on selected reaction monitoring, we tested a panel of well-described culture conditions, and measured levels of protein markers routinely used to probe neural differentiation, i.e. POU5F1 (OCT4), SOX2, NES, DCX, TUBB3, MAP2, S100B, GFAP, GALC, and OLIG1. Our multiplexed assay enabled us to simultaneously identify the presence of pluripotent, multipotent, and lineage-committed neural cells, thus representing a powerful tool to optimize novel and highly specific propagation and differentiation protocols. The multiplexing capacity of this method permits the addition of other newly identified cell type-specific markers to further increase the specificity and quantitative accuracy in detecting targeted cell populations. Such an expandable assay may gain the advantage over traditional antibody-based assays, and represents a method of choice for quality control of neural stem cell lines intended for clinical use.


Assuntos
Diferenciação Celular , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Biomarcadores , Linhagem Celular , Linhagem da Célula/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Imuno-Histoquímica , Espectrometria de Massas , Neuroglia , Neurônios
12.
Sci Transl Med ; 13(588)2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33827977

RESUMO

Huntingtin (HTT)-lowering therapies hold promise to slow down neurodegeneration in Huntington's disease (HD). Here, we assessed the translatability and long-term durability of recombinant adeno-associated viral vector serotype 5 expressing a microRNA targeting human HTT (rAAV5-miHTT) administered by magnetic resonance imaging-guided convention-enhanced delivery in transgenic HD minipigs. rAAV5-miHTT (1.2 × 1013 vector genome (VG) copies per brain) was successfully administered into the striatum (bilaterally in caudate and putamen), using age-matched untreated animals as controls. Widespread brain biodistribution of vector DNA was observed, with the highest concentration in target (striatal) regions, thalamus, and cortical regions. Vector DNA presence and transgene expression were similar at 6 and 12 months after administration. Expression of miHTT strongly correlated with vector DNA, with a corresponding reduction of mutant HTT (mHTT) protein of more than 75% in injected areas, and 30 to 50% lowering in distal regions. Translational pharmacokinetic and pharmacodynamic measures in cerebrospinal fluid (CSF) were largely in line with the effects observed in the brain. CSF miHTT expression was detected up to 12 months, with CSF mHTT protein lowering of 25 to 30% at 6 and 12 months after dosing. This study demonstrates widespread biodistribution, strong and durable efficiency of rAAV5-miHTT in disease-relevant regions in a large brain, and the potential of using CSF analysis to determine vector expression and efficacy in the clinic.


Assuntos
Doença de Huntington , MicroRNAs , Animais , Modelos Animais de Doenças , Terapia Genética , Vetores Genéticos/genética , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Doença de Huntington/terapia , MicroRNAs/metabolismo , Suínos , Porco Miniatura/metabolismo , Distribuição Tecidual
13.
Mol Ther Methods Clin Dev ; 15: 343-358, 2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31828177

RESUMO

Spinocerebellar ataxia type 3 (SCA3), or Machado-Joseph disease (MJD), is a progressive neurodegenerative disorder caused by a CAG expansion in the ATXN3 gene. The expanded CAG repeat is translated into a prolonged polyglutamine repeat in the ataxin-3 protein and accumulates within inclusions, acquiring toxic properties, which results in degeneration of the cerebellum and brain stem. In the current study, a non-allele-specific ATXN3 silencing approach was investigated using artificial microRNAs engineered to target various regions of the ATXN3 gene (miATXN3). The miATXN3 candidates were screened in vitro based on their silencing efficacy on a luciferase (Luc) reporter co-expressing ATXN3. The three best miATXN3 candidates were further tested for target engagement and potential off-target activity in induced pluripotent stem cells (iPSCs) differentiated into frontal brain-like neurons and in a SCA3 knockin mouse model. Besides a strong reduction of ATXN3 mRNA and protein, small RNA sequencing revealed efficient guide strand processing without passenger strands being produced. We used different methods to predict alteration of off-target genes upon AAV5-miATXN3 treatment and found no evidence for unwanted effects. Furthermore, we demonstrated in a large animal model, the minipig, that intrathecal delivery of AAV5 can transduce the main areas affected in SCA3 patients. These results proved a strong basis to move forward to investigate distribution, efficacy, and safety of AAV5-miATXN3 in large animals.

14.
Dis Model Mech ; 13(2)2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31645369

RESUMO

Recently developed therapeutic approaches for the treatment of Huntington's disease (HD) require preclinical testing in large animal models. The minipig is a suitable experimental animal because of its large gyrencephalic brain, body weight of 70-100 kg, long lifespan, and anatomical, physiological and metabolic resemblance to humans. The Libechov transgenic minipig model for HD (TgHD) has proven useful for proof of concept of developing new therapies. However, to evaluate the efficacy of different therapies on disease progression, a broader phenotypic characterization of the TgHD minipig is needed. In this study, we analyzed the brain tissues of TgHD minipigs at the age of 48 and 60-70 months, and compared them to wild-type animals. We were able to demonstrate not only an accumulation of different forms of mutant huntingtin (mHTT) in TgHD brain, but also pathological changes associated with cellular damage caused by mHTT. At 48 months, we detected pathological changes that included the demyelination of brain white matter, loss of function of striatal neurons in the putamen and activation of microglia. At 60-70 months, we found a clear marker of neurodegeneration: significant cell loss detected in the caudate nucleus, putamen and cortex. This was accompanied by clusters of structures accumulating in the neurites of some neurons, a sign of their degeneration that is also seen in Alzheimer's disease, and a significant activation of astrocytes. In summary, our data demonstrate age-dependent neuropathology with later onset of neurodegeneration in TgHD minipigs.


Assuntos
Doença de Huntington/patologia , Degeneração Neural/patologia , Envelhecimento/patologia , Animais , Animais Geneticamente Modificados , Biomarcadores/metabolismo , Índice de Massa Corporal , Núcleo Caudado/patologia , Núcleo Caudado/ultraestrutura , Modelos Animais de Doenças , Feminino , Genótipo , Humanos , Proteína Huntingtina/metabolismo , Masculino , Córtex Motor/patologia , Córtex Motor/ultraestrutura , Bainha de Mielina/metabolismo , Agregados Proteicos , Suínos , Porco Miniatura , Redução de Peso , Substância Branca/patologia , Substância Branca/ultraestrutura
15.
Oncol Rep ; 42(5): 1793-1804, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31545456

RESUMO

The steadily increasing incidence of malignant melanoma (MM) and its aggressive behaviour makes this tumour an attractive cancer research topic. The tumour microenvironment is being increasingly recognised as a key factor in cancer biology, with an impact on proliferation, invasion, angiogenesis and metastatic spread, as well as acquired therapy resistance. Multiple bioactive molecules playing cooperative roles promote the chronic inflammatory milieu in tumours, making inflammation a hallmark of cancer. This specific inflammatory setting is evident in the affected tissue. However, certain mediators can leak into the systemic circulation and affect the whole organism. The present study analysed the complex inflammatory response in the sera of patients with MM of various stages. Multiplexed proteomic analysis (Luminex Corporation) of 31 serum proteins was employed. These targets were observed in immunohistochemical profiles of primary tumours from the same patients. Furthermore, these proteins were analysed in MM cell lines and the principal cell population of the melanoma microenvironment, cancer­associated fibroblasts. Growth factors such as hepatocyte growth factor, granulocyte­colony stimulating factor and vascular endothelial growth factor, chemokines RANTES and interleukin (IL)­8, and cytokines IL­6, interferon­α and IL­1 receptor antagonist significantly differed in these patients compared with the healthy controls. Taken together, the results presented here depict the inflammatory landscape that is altered in melanoma patients, and highlight potentially relevant targets for therapy improvement.


Assuntos
Biomarcadores Tumorais/sangue , Proteínas Sanguíneas/análise , Fibroblastos Associados a Câncer/metabolismo , Melanoma/metabolismo , Proteômica/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Linhagem Celular Tumoral , Quimiocinas/sangue , Feminino , Humanos , Masculino , Melanoma/sangue , Pessoa de Meia-Idade , Projetos Piloto , Prognóstico
16.
Dis Model Mech ; 12(7)2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31278192

RESUMO

Skeletal muscle wasting and atrophy is one of the more severe clinical impairments resulting from the progression of Huntington's disease (HD). Mitochondrial dysfunction may play a significant role in the etiology of HD, but the specific condition of mitochondria in muscle has not been widely studied during the development of HD. To determine the role of mitochondria in skeletal muscle during the early stages of HD, we analyzed quadriceps femoris muscle from 24-, 36-, 48- and 66-month-old transgenic minipigs that expressed the N-terminal portion of mutated human huntingtin protein (TgHD) and age-matched wild-type (WT) siblings. We found altered ultrastructure of TgHD muscle tissue and mitochondria. There was also significant reduction of activity of citrate synthase and respiratory chain complexes (RCCs) I, II and IV, decreased quantity of oligomycin-sensitivity conferring protein (OSCP) and the E2 subunit of pyruvate dehydrogenase (PDHE2), and differential expression of optic atrophy 1 protein (OPA1) and dynamin-related protein 1 (DRP1) in the skeletal muscle of TgHD minipigs. Statistical analysis identified several parameters that were dependent only on HD status and could therefore be used as potential biomarkers of disease progression. In particular, the reduction of biomarker RCCII subunit SDH30 quantity suggests that similar pathogenic mechanisms underlie disease progression in TgHD minipigs and HD patients. The perturbed biochemical phenotype was detectable in TgHD minipigs prior to the development of ultrastructural changes and locomotor impairment, which become evident at the age of 48 months. Mitochondrial disturbances may contribute to energetic depression in skeletal muscle in HD, which is in concordance with the mobility problems observed in this model.This article has an associated First Person interview with the first author of the paper.


Assuntos
Modelos Animais de Doenças , Metabolismo Energético , Doença de Huntington/metabolismo , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Animais , Animais Geneticamente Modificados , Peso Corporal , DNA/metabolismo , Progressão da Doença , Transporte de Elétrons , Humanos , Proteína Huntingtina/genética , Doença de Huntington/patologia , Mitocôndrias Musculares/ultraestrutura , Proteínas Mitocondriais/metabolismo , Músculo Esquelético/ultraestrutura , Mutação , Fosforilação Oxidativa , Suínos , Porco Miniatura
17.
Neurodegener Dis ; 19(1): 22-34, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31167196

RESUMO

BACKGROUND: Huntington's disease (HD) is a devastating neurodegenerative disorder caused by CAG triplet expansions in the huntingtin gene. Oxidative stress is linked to HD pathology, although it is not clear whether this is an effect or a mediator of disease. The transgenic (TgHD) minipig expresses the N-terminal part of human-mutated huntingtin and represents a unique model to investigate therapeutic strategies towards HD. A more detailed characterization of this model is needed to fully utilize its potential. METHODS: In this study, we focused on the molecular and cellular features of fibroblasts isolated from TgHD minipigs and the wild-type (WT) siblings at different ages, pre-symptomatic at the age of 24-36 months and with the onset of behavioural symptoms at the age of 48 months. We measured oxidative stress, the expression of oxidative stress-related genes, proliferation capacity along with the expression of cyclin B1 and D1 proteins, cellular permeability, and the integrity of the nuclear DNA (nDNA) and mitochondrial DNA in these cells. RESULTS: TgHD fibroblasts isolated from 48-month-old animals showed increased oxidative stress, which correlated with the overexpression of SOD2 encoding mitochondrial superoxide dismutase 2, and the NEIL3 gene encoding DNA glycosylase involved in replication-associated repair of oxidized DNA. TgHD cells displayed an abnormal proliferation capacity and permeability. We further demonstrated increased nDNA damage in pre-symptomatic TgHD fibroblasts (isolated from animals aged 24-36 months). CONCLUSIONS: Our results unravel phenotypic alterations in primary fibroblasts isolated from the TgHD minipig model at the age of 48 months. Importantly, nDNA damage appears to precede these phenotypic alterations. Our results highlight the impact of fibroblasts from TgHD minipigs in studying the molecular mechanisms of HD pathophysiology that gradually occur with age.


Assuntos
Envelhecimento/metabolismo , Fibroblastos/metabolismo , Proteína Huntingtina/metabolismo , Animais , Animais Geneticamente Modificados , Divisão Celular , Dano ao DNA , DNA Mitocondrial/genética , Regulação da Expressão Gênica , Humanos , Proteína Huntingtina/genética , Peroxidação de Lipídeos , N-Glicosil Hidrolases/biossíntese , N-Glicosil Hidrolases/genética , Estresse Oxidativo , Fenótipo , Cultura Primária de Células , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/biossíntese , Superóxido Dismutase/genética , Suínos , Porco Miniatura
18.
Expert Opin Drug Discov ; 14(2): 169-177, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30616395

RESUMO

INTRODUCTION: Combinatory strategies using pharmacology and stem cell therapy have emerged due to their potential in the treatment of retinal pigment epithelium (RPE) cell related diseases, and a variety of different stem cell sources have been evaluated both in animal models and in humans. RPE cells derived from human embryonic stem cells (hESCs) and human induced pluripotent cells (hiPSCs) are already in clinical trials, holding great promise for the treatment of age-related macular disease (AMD) and hereditary RPE-related retinal dystrophies. Highly efficient protocol for RPE generations have been developed, but they are still time-consuming and laborious. Areas covered: The authors review RPE related diseases, as well as the known functions of RPE cells in retinal homeostasis. The authors also discuss small molecules that target RPE in vivo as well as in vitro to aid RPE differentiation from pluripotent stem cells clinically. The authors base this review on literature searches performed through PubMed. Expert opinion: Using high-throughput systems, technology will provide the possibility of identifying and optimizing molecules/drugs that could lead to faster and simpler protocols for RPE differentiation. This could be crucial in moving forward to create safer and more efficient RPE-based personalized therapies.


Assuntos
Degeneração Macular/terapia , Doenças Retinianas/terapia , Epitélio Pigmentado da Retina/citologia , Animais , Diferenciação Celular/fisiologia , Terapia Combinada , Ensaios de Triagem em Larga Escala , Humanos , Degeneração Macular/fisiopatologia , Células-Tronco Pluripotentes/citologia , Doenças Retinianas/fisiopatologia , Transplante de Células-Tronco/métodos
19.
J Huntingtons Dis ; 8(1): 33-51, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30584151

RESUMO

BACKGROUND: Although the highest expression of mutant huntingtin (mtHtt) was observed in the brain, its negative effects were also apparent in other tissues. Specifically, mtHtt impairs metabolic homeostasis and causes transcriptional dysregulation in adipose tissue. Adipogenic differentiation can be induced by the activation of two transcription factors: CCAAT/enhancer-binding protein alpha (CEBPα) and peroxisome proliferator-activated receptor gamma (PPARγ). These same transcription factors were found to be compromised in some tissues of Huntington's disease (HD) mouse models and in lymphocytes of HD patients. OBJECTIVE: This study investigated the adipogenic potential of mesenchymal stem cells (MSCs) derived from transgenic Huntington's disease (TgHD) minipigs expressing human mtHtt (1-548aa) containing 124 glutamines. Two differentiation conditions were used, employing PPARγ agonist rosiglitazone or indomethacin. METHODS: Bone marrow MSCs were isolated from TgHD and WT minipig siblings and compared by their cluster of differentiation using flow cytometry. Their adipogenic potential in vitro was analyzed using quantitative immunofluorescence and western blot analysis of transcription factors and adipogenic markers. RESULTS: Flow cytometry analysis did not reveal any significant difference between WT and TgHD MSCs. Nevertheless, following differentiation into adipocytes, the expression of CEBPα nuclear, PPARγ and adipogenic marker FABP4/AP2 were significantly lower in TgHD cells compared to WT cells. In addition, we proved both rosiglitazone and indomethacin to be efficient for adipogenic differentiation of porcine MSCs, with rosiglitazone showing a better adipogenic profile. CONCLUSIONS: We demonstrated a negative influence of mtHtt on adipogenic differentiation of porcine MSCs in vitro associated with compromised expression of adipogenic transcription factors.


Assuntos
Adipogenia , Células da Medula Óssea/citologia , Doença de Huntington/patologia , Células-Tronco Mesenquimais/citologia , Adipócitos/citologia , Animais , Animais Geneticamente Modificados/genética , Células Cultivadas , Humanos , Doença de Huntington/genética , Suínos , Fatores de Transcrição/genética
20.
J Huntingtons Dis ; 7(3): 269-278, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30103340

RESUMO

BACKGROUND: Large animal models, such as the transgenic (tg) Huntington disease (HD) minipig, have been proposed to improve translational reliability and assessment of safety, efficacy and tolerability in preclinical studies. Minipigs are characterised by high genetic homology and comparable brain structures to humans. In addition, behavioural assessments successfully applied in humans could be explored in minipigs to establish similar endpoints in preclinical and clinical studies. Recently, analysis of voice and speech production was established to characterise HD patients. OBJECTIVE: The aim of this study was to investigate whether vocalisation could also serve as a viable marker for phenotyping minipigs transgenic for Huntington's disease (tgHD) and whether tgHD minipigs reveal changes in this domain compared to wildtype (wt) minipigs. METHODS: While conducting behavioural testing, incidence of vocalisation was assessed for a cohort of 14 tgHD and 18 wt minipigs. Statistical analyses were performed using Fisher's Exact Test for group comparisons and McNemar's Test for intra-visit differences between tgHD and wt minipigs. RESULTS: Vocalisation can easily be documented during phenotyping assessments of minipigs. Differences in vocalisation incidences across behavioural conditions were detected between tgHD and wt minipigs. Influence of the genotype on vocalisation was detectable during a period of 1.5 years. CONCLUSION: Vocalisation may be a viable marker for phenotyping minipigs transgenic for the Huntington gene. Documentation of vocalisation provides a non-invasive opportunity to capture potential disease signs and explore phenotypic development including the age of disease manifestation.


Assuntos
Animais Geneticamente Modificados , Modelos Animais de Doenças , Doença de Huntington , Fenótipo , Porco Miniatura , Vocalização Animal , Animais , Percepção de Cores , Discriminação Psicológica , Feminino , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/fisiopatologia , Doença de Huntington/psicologia , Estudos Longitudinais , Destreza Motora , Reversão de Aprendizagem , Suínos , Fatores de Tempo , Língua/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA