Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Colloid Interface Sci ; 331: 103241, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38909547

RESUMO

Solid Oxide Fuel Cells (SOFCs) have proven to be highly efficient and one of the cleanest electrochemical energy conversion devices. However, the commercialization of this technology is hampered by issues related to electrode performance degradation. This article provides a comprehensive review of the various degradation mechanisms that affect the performance and long-term stability of the SOFC anode caused by the interplay of physical, chemical, and electrochemical processes. In SOFCs, the most used anode material is nickel-yttria stabilized zirconia (Ni-YSZ) due to its advantages of high electronic conductivity and high catalytic activity for H2 fuel. However, various factors affecting the long-term stability of the Ni-YSZ anode, such as redox cycling, carbon coking, sulfur poisoning, and the reduction of the triple phase boundary length due to Ni particle coarsening, are thoroughly investigated. In response, the article summarizes the state-of-the-art diagnostic tools and mitigation strategies aimed at improving the long-term stability of the Ni-YSZ anode.

2.
Heliyon ; 10(10): e31424, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38818153

RESUMO

Greenly synthesized nanoparticles have garnered attention due to their low environmental footprint, but impurities limit their applications. A novel semi-organic method for synthesizing silver nanoparticles (AgNPs) using bio-based chelating fuels (Beta vulgaris subsp., Spinacia oleracea, and Ipomoea batatas) reduces the undesirable impurities. The study also showcases the impact of bio-based chelating fuel on various characteristics of AgNPs in comparison to synthetic chelating fuel. The antimicrobial efficacy of the synthesized AgNPs in conjunction with honey was also assessed against E. coli. The XRD analysis showed cubic structure of AgNPs. The FESEM and TEM analysis showed that the well-connected spherical-shaped AgNPs (∼3-120 nm diameter) while EDS confirmed the presence of Ag in all samples. The TEM analysis also revealed layers of carbonates in AgNPs synthesized using bio-based chelating fuels. XPS investigation confirmed the absence of any prominent impurities in prepared samples and AgNPs have not experienced oxidation on their surface. However, notable surface charging effects due to the uneven conductivity of the particles were observed. The broth dilution method showed that all mixtures containing AgNPs in combination with honey exhibited a significant bacterial growth reduction over a period of 120 h. The highest growth reduction of ∼75 % is obtained for the mixture having AgNPs (Ipomoea batatas) while the least growth reduction of ∼51 % is obtained for the mixture having AgNPs (Beta vulgaris subsp.). The findings affirm that AgNPs can be successfully synthesized using bio-based chelating fuels with negligible ecological consequences and devoid of contaminants. Moreover, the synthesized AgNPs can be employed in conjunction with honey for antibacterial purposes.

3.
RSC Adv ; 14(18): 12513-12527, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38633481

RESUMO

Here, synthesis and thorough characterization of ß-NaFeO2 nanoparticles utilizing a co-precipitation technique is presented. XRD analysis confirmed a hexagonal-phase structure of ß-NaFeO2. SEM revealed well-dispersed spherical nanoparticles with an average diameter of 45 nm. The FTIR spectrum analysis revealed weak adsorption bands at 1054 cm-1 suggested metal-metal bond stretching (Fe-Na). UV-Visible spectroscopy indicates a 4.4 eV optical band gap. Colloidal stability of ß-NaFeO2 was evidenced via Zeta potential (-28.5 mV) and Dynamic Light Scattering (DLS) measurements. BET analysis reveals a substantial 343.27 m2 g-1 surface area with mesoporous characteristics. Antioxidant analysis indicates efficacy comparable to standard antioxidants, while concentration-dependent antibacterial effects suggest enhanced efficacy against Gram-positive bacteria, particularly Streptococcus. The Photocatalytic activity of ß-NaFeO2 showed significant pollutant degradation (>90% efficiency), with increased degradation rates at higher nanoparticle concentrations, indicating potential for environmental remediation applications.

4.
J Environ Manage ; 358: 120858, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38614005

RESUMO

This review presents a comprehensive analysis of the ecological implications of metallic nanoparticles (MNPs) on photosynthetic organisms, particularly plants and algae. We delve into the toxicological impacts of various MNPs, including gold, silver, copper-based, zinc oxide, and titanium dioxide nanoparticles, elucidating their effects on the growth and health of these organisms. The article also summarizes the toxicity mechanisms of these nanoparticles in plants and algae from previous research, providing insight into the cellular and molecular interactions that underpin these effects. Furthermore, it discusses the reciprocal interactions between different types of MNPs, their combined effects with other metal contaminants, and compares the toxicity between MNPs with their counterpart. This review highlights the urgent need for a deeper understanding of the environmental impact, considering their escalating use and the potential risks they pose to ecological systems, especially in the context of photosynthetic organisms that are vital to ecosystem health and stability.


Assuntos
Nanopartículas Metálicas , Fotossíntese , Nanopartículas Metálicas/toxicidade , Fotossíntese/efeitos dos fármacos , Ecossistema , Plantas/efeitos dos fármacos , Ecologia , Prata/toxicidade
5.
ChemSusChem ; : e202400027, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38588020

RESUMO

An in-depth investigation was conducted on a promising composite material (BiVO4/TiO2), focusing on its potential toxicity, photoinduced catalytic properties, as well as its antibiofilm and antimicrobial functionalities. The preparation process involved the synthesis of 2D TiO2 using the lyophilization method, which was subsequently functionalized with sphere-like BiVO4 through wet impregnation. Finally, we developed BiVO4/TiO2 S-scheme heterojunctions which can greatly promote the separation of electron-hole pairs to achieve high photocatalytic performance. The evaluation of concentration- and time-dependent viability inhibition was performed on human lung carcinoma epithelial A549 cells. This assessment included the estimation of glutathione levels and mitochondrial dehydrogenase activity. Significantly, the BiVO4/TiO2 composite demonstrated minimal toxicity towards A549 cells. Impressively, the BiVO4/TiO2 composite exhibited notable photocatalytic performance in the degradation of rhodamine B (k=0.135 min-1) and phenol (k=0.016 min-1). In terms of photoinduced antimicrobial performance, the composite effectively inactivated both gram-negative E. coli and gram-positive E. faecalis bacteria upon 60 minutes of UV-A light exposure, resulting in a significant log 6 (log 10 CFU/mL) reduction in bacterial count. In addition, a 49 % reduction of E. faecalis biofilm was observed. These promising results can be attributed to the unique 2D morphology of TiO2 modified by sphere-like BiVO4, leading to an increased generation of (intracellular) hydroxyl radicals, which plays a crucial role in the treatments of both organic pollutants and bacteria. This research has significant potential for various applications, particularly in addressing environmental contamination and microbial infections.

6.
Chem Commun (Camb) ; 60(4): 374-383, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38099627

RESUMO

Many published articles have reported the advantages of coupling photocatalysis and Fenton-based processes for environmental remediation purposes, especially wastewaters treatment, but without providing detailed discussion on how and why the resulting process is better, thus leading to misconception about their synergy. In this work, the context of the water pollution is presented along with the pros and cons of individual photocatalysis and Fenton-based processes. The simultaneous triggering of these two advanced oxidation processes is critically discussed from both performance and mechanism sides since additional effect and synergy are often misunderstood in the literature. Insights into research approaches to clarify the synergistic mechanism between photocatalysis and Fenton-based processes are also provided. One of the key features is to assess the separated contribution of the individual processes and also to elucidate the charge carriers' dynamics at the surface of the catalyst. The aim of this work is to inform scientists about the complexity of simultaneously triggered photocatalysis and Fenton-based processes but also to highlight the potential development of a new generation of catalysts that might be integrated to current wastewater treatment technology to achieve higher efficiency and their implications in the circular economy of water.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA