Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 253: 126584, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32278186

RESUMO

Studies on disturbance events in riverine systems caused by environmental disasters and their effects on microbial diversity are scarce. Here, we evaluated the impact of the collapse of an iron ore dam holding approximately 50 million cubic meters of waste on both water and sediment microbiomes by deeply sequencing the 16S rRNA gene. Samples were taken from two impacted rivers and one reference river 7, 30 and 150 days postdisturbance. The impacted community structure changed greatly over spatiotemporal scales, being less diverse and more uneven, particularly on day 7 for the do Carmo River (the closest to the dam). However, the reference community structure remained similar between sampling events. Moreover, the impacted sediments were positively correlated with metals. The taxa abundance varied greatly over spatiotemporal scales, allowing for the identification of several potential bioindicators, e.g., Comamonadaceae, Novosphingobium, Sediminibacterium and Bacteriovorax. Our results showed that the impacted communities consisted mostly of Fe(II) oxidizers and Fe(III) reducers, aromatic compound degraders and predator bacteria. Network analysis showed a highly interconnected microbiome whose interactions switched from positive to negative or vice versa between the impacted and reference communities. This work revealed potential molecular signatures associated with the rivers heavily impacted by metals that might be useful sentinels for predicting riverine health.


Assuntos
Monitoramento Ambiental , Microbiota , Mineração , Rios/microbiologia , Poluentes Químicos da Água/análise , Bactérias/genética , Bacteroidetes/genética , Compostos Férricos/análise , Sedimentos Geológicos/química , RNA Ribossômico 16S/genética , Rios/química , Esgotos/análise , Tsunamis
2.
Water Res ; 132: 79-89, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29306702

RESUMO

Gut microbiota exerts a fundamental role on host physiology, and how extrinsic perturbations influence its composition has been increasingly examined. However, the effect of drinking water on gut microbiota is still poorly understood. In this study, we explored the response of mouse gut bacterial community (fecal and mucosa-adhered) to the ingestion of different types of drinking water. The experimental cohort was divided according to different water sources into four groups of mice that consumed autoclaved tap water (control group), water collected directly from a drinking water treatment plant, tap water, and commercial bottled mineral water. Differences among groups were observed, especially related to control group, which exhibited the smallest intra-group variation, and the largest distance from test groups on the last experimental day. Clinically important taxa, such as Acinetobacter and Staphylococcus, increased in feces of mice that drank tap water and in mucosa-adhered samples of animals from disinfected and tap water groups. Furthermore, statistical analyses showed that both time elapsed between samplings and water type significantly influenced the variation observed in the samples. Our results reveal that drinking water potentially affects gut microbiota composition. Additionally, the increase of typical drinking water clinically relevant and antibiotic resistance-associated bacteria in gut microbiota is a cause of concern.


Assuntos
Bactérias/classificação , Água Potável , Microbioma Gastrointestinal , Águas Minerais , Animais , Desinfecção , Fezes/microbiologia , Feminino , Camundongos Endogâmicos BALB C , Purificação da Água , Abastecimento de Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA