Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chem Asian J ; : e202300532, 2023 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-37544903

RESUMO

This study explores a water-splitting activity using a biphasic electrodeposited electrode on nickel foam (NF). The *Ni9 S8 /Cu7 S4 /NF electrode with citric acid reduction exhibits superior OER (oxygen evolution reaction) and HER (hydrogen evolution reaction) performance with reduced overpotential and a steeper Tafel slope. The *Ni9 S8 /Cu7 S4 /NF electrode displays the ultra-low overpotential value of 212 mV for OER and 109 mV for HER at the current density of 10 mA cm-2 . The Tafel slope of 25.4 mV dec-1 for OER and 108 mV dec-1 for HER was found from that electrode. The maximum electrochemical surface area (ECSA), lowest series resistance and lowest charge transfer resistance are found in citric acid reduced electrode, showing increased electrical conductivity and quick charge transfer kinetics. Remarkably, the *Ni9 S8 /Cu7 S4 /NF electrode demonstrated excellent stability for 80 hours in pure water splitting and 20 hours in seawater splitting. The synergistic effect of using bimetallic (Cu&Ni) sulfide and enhanced electrical conductivity of the electrode are caused by reduction of metal sulfide into metallic species resulting in improved water splitting performance.

2.
RSC Adv ; 13(28): 19130-19139, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37362330

RESUMO

This study represents a green synthesis method for fabricating an oxygen evolution reaction (OER) electrode by depositing two-dimensional CuFeOx on nickel foam (NF). Two-dimensional CuFeOx was deposited on NF using in situ hydrothermal synthesis in the presence of Aloe vera extract. This phytochemical-assisted synthesis of CuFeOx resulted in a unique nano-rose-like morphology (petal diameter 30-70 nm), which significantly improved the electrochemical surface area of the electrode. The synthesized electrode was analyzed for its OER electrocatalytic activity and it was observed that using 75% Aloe vera extract in the phytochemical-assisted synthesis of CuFeOx resulted in improved OER electrocatalytic performance by attaining an overpotential of 310 mV for 50 mA cm-2 and 410 mV for 100 mA cm-2. The electrode also sustained robust stability throughout the 50 h of chronopotentiometry studies under alkaline electrolyte conditions, demonstrating its potential as an efficient OER electrode material. This study highlights the promising use of Aloe vera extract as a green and cost-effective way to synthesize efficient OER electrode materials.

3.
RSC Adv ; 13(19): 12781-12791, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37124018

RESUMO

NiO x as a hole transport layer (HTL) has gained a lot of research interest in perovskite solar cells (PSCs), owing to its high optical transmittance, high power conversion efficiency, wide band-gap and ease of fabrication. In this work, four different nickel based-metal organic frameworks (MOFs) using 1,3,5-benzenetricarboxylic acid (BTC), terephthalic acid (TPA), 2-aminoterephthalic acid (ATPA), and 2,5-dihydroxyterephthalic acid (DHTPA) ligands respectively, have been employed as precursors to synthesize NiO x NPs. The employment of different ligands was found to result in NiO x NPs with different structural, optical and morphological properties. The impact of calcination temperatures of the MOFs was also studied and according to field emission scanning electron microscopy (FESEM), all MOF-derived NiO x NPs exhibited lower particle size at lower calcination temperature. Upon optimization, Ni-TPA MOF derived NiO x NPs calcined at 600 °C were identified to be the best for hole transport layer application. To explore the photovoltaic performance, these NiO x NPs have been fabricated as a thin film and its structural, optical and electrical characteristics were analyzed. According to the findings, the band energy gap (E g) of the fabricated thin film has been found to be 3.25 eV and the carrier concentration, hole mobility and resistivity were also measured to be 6.8 × 1014 cm-3; 4.7 × 1014 Ω cm and 2.0 cm2 V-1 s-1, respectively. Finally, a numerical simulation was conducted using SCAPS-1D incorporating the optical and electrical parameters from the thin film analysis. FTO/TiO2/CsPbBr3/NiO x /C has been utilized as the device configuration which recorded an efficiency of 13.9% with V oc of 1.89 V, J sc of 11.07 mA cm-2, and FF of 66.6%.

4.
J Synchrotron Radiat ; 19(Pt 4): 647-53, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22713902

RESUMO

The P03 beamline, also called the microfocus and nanofocus X-ray scattering (MiNaXS) beamline, exploits the excellent photon beam properties of the low-emittance source PETRA III to provide a microfocused/nanofocused beam with ultra-high intensity for time-resolved X-ray scattering experiments. The beamline has been designed to perform X-ray scattering in both transmission and reflection geometries. The microfocus endstation started user operation in May 2011. An overview of the beamline status and of some representative results highlighting the performance of the microfocus endstation at MiNaXS are given.

5.
Langmuir ; 28(21): 8230-7, 2012 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-22519820

RESUMO

The installation of large scale colloidal nanoparticle thin films is of great interest in sensor technology or data storage. Often, such devices are operated at elevated temperatures. In the present study, we investigate the effect of heat treatment on the structure of colloidal thin films of polystyrene (PS) nanoparticles in situ by using the combination of grazing incidence small-angle X-ray scattering (GISAXS) and optical ellipsometry. In addition, the samples are investigated with optical microscopy, atomic force microscopy (AFM), and field emission scanning electron microscopy (FESEM). To install large scale coatings on silicon wafers, spin-coating of colloidal pure PS nanoparticles and carboxylated PS nanoparticles is used. Our results indicate that thermal annealing in the vicinity of the glass transition temperature T(g) of pure PS leads to a rapid loss in the ordering of the nanoparticles in spin-coated films. For carboxylated particles, this loss of order is shifted to a higher temperature, which can be useful for applications at elevated temperatures. Our model assumes a softening of the boundaries between the individual colloidal spheres, leading to strong changes in the nanostructure morphology. While the nanostructure changes drastically, the macroscopic morphology remains unaffected by annealing near T(g).


Assuntos
Membranas Artificiais , Nanopartículas/química , Poliestirenos/química , Temperatura , Coloides/química , Tamanho da Partícula , Propriedades de Superfície
6.
ACS Macro Lett ; 1(3): 396-399, 2012 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-35578509

RESUMO

We show a route to produce a two- and three-dimensional network of nanoparticles via polymer-mediated self-assembly. A negatively charged polymer, CO2-functionalized poly (para-phenyleneethylene) (PPE-CO2), is used to build this network of iron-platinum (Fe-Pt) nanoparticles. The nanoparticles arrange locally in hexagonal and cubic lattice type network structures. The size and form of the networks are characterized with atomic force microscopy (AFM), transmission electron microscopy (TEM), small-angle X-ray scattering (SAXS), and grazing incidence small-angle X-ray scattering (GISAXS). In thin film the network is perturbed due to the force field acting during spin coating.

7.
Langmuir ; 27(1): 343-6, 2011 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-21117670

RESUMO

Cobalt (Co) sputter deposition onto a colloidal polymer template is investigated using grazing incidence small-angle X-ray scattering (GISAXS), scanning electron microscopy (SEM), and atomic force microscopy (AFM). SEM and AFM data picture the sample topography, GISAXS the surface and near-surface film structure. A two-phase model is proposed to describe the time evolution of the Co growth. The presence of the colloidal template results in the correlated deposition of an ultrathin Co film on the sample surface and thus in the creation of Co capped polystyrene (PS) colloids. Well below the percolation threshold, the radial growth is restricted and only height growth is observed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA