Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Biol Psychiatry ; 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38142717

RESUMO

BACKGROUND: Suicidal ideation is a substantial clinical challenge in treatment-resistant depression (TRD). Recent work demonstrated promising antidepressant effects in TRD patients with no or mild suicidal ideation using a specific protocol termed intermittent theta burst stimulation (iTBS). Here, we examined the clinical effects of accelerated schedules of iTBS and continuous TBS (cTBS) in patients with moderate to severe suicidal ideation. METHODS: Patients with TRD and moderate to severe suicidal ideation (n = 44) were randomly assigned to receive accelerated iTBS or cTBS treatment. Treatments were delivered in 10 daily TBS sessions (1800 pulses/session) for 5 consecutive days (total of 90,000 pulses). Neuronavigation was employed to target accelerated iTBS and cTBS to the left and right dorsolateral prefrontal cortex (DLPFC), respectively. Clinical outcomes were evaluated in a 4-week follow-up period. RESULTS: Accelerated cTBS was superior to iTBS in the management of suicidal ideation (pweek 1 = .027) and anxiety symptoms (pweek 1 = .01). Accelerated iTBS and cTBS were comparable in antidepressant effects (p < .001; accelerated cTBS: mean change at weeks 1, 3, 5 = 49.55%, 54.99%, 53.11%; accelerated iTBS: mean change at weeks 1, 3, 5 = 44.52%, 48.04%, 51.74%). No serious adverse events occurred during the trial. One patient withdrew due to hypomania. The most common adverse event was discomfort at the treatment site (22.73% in both groups). CONCLUSIONS: These findings provide the first evidence that accelerated schedules of left DLPFC iTBS and right DLPFC cTBS are comparably effective in managing antidepressant symptoms and indicate that right DLPFC cTBS is potentially superior in reducing suicidal ideation and anxiety symptoms.

2.
Brain Sci ; 13(8)2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37626579

RESUMO

Several pieces of evidence show that signaling via brain-derived neurotrophic factor (BDNF) and its receptor, tropomycin receptor kinase B (TrkB), as well as inflammation, play a crucial part in the pathophysiology of depression. The purpose of our study was to evaluate plasma levels of BDNF-TrkB signaling, which are inflammatory factors in major depressive disorder (MDD) patients, and assess their associations with clinical performance. This study recruited a total sample of 83 MDD patients and 93 healthy controls (CON). All the participants were tested with the Hamilton Depression Scale (HAMD), the Beck Scale for Suicide Ideation, and the NEO Five-Factor Inventory. The plasma level of selected BDNF-TrkB signaling components (mature BDNF (mBDNF), precursor BDNF (proBDNF), tyrosine kinase B (TrkB), and tissue plasminogen activator (tPA)) and selected inflammatory factors (interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α)) were measured using an enzyme-linked immunosorbent assay (ELISA). Further, we performed correlation analysis to indicate the relationship between the plasma levels of the factors and clinical characteristics. Results: (i) A higher level of mBDNF and lower openness were observed in MDD patients with higher suicidal ideation than patients with lower suicidal ideation. (ii) In MDD patients, mBDNF was positively correlated with the sum score of the Beck Scale for Suicide Ideation (BSS). (iii) The levels of mBDNF, tPA, IL-1 ß and IL-6 were significantly higher in all MDD subjects compared to the healthy controls, while the levels of TrkB and proBDNF were lower in MDD subjects. Conclusion: Our study provides novel insights regarding the potential role of mBDNF in the neurobiology of the association between depression and suicidal ideation and, in particular, the relationship between BDNF-TrkB signaling, inflammatory factors, and clinical characteristics in MDD.

3.
CNS Neurosci Ther ; 29 Suppl 1: 115-128, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36650644

RESUMO

BACKGROUND: Most of the previous studies have demonstrated the potential antidepressive and anxiolytic role of prebiotic supplement in male subjects, yet few have females enrolled. Herein, we explored whether prebiotics administration during chronic stress prevented depression-like and anxiety-like behavior in a sex-specific manner and the mechanism of behavioral differences caused by sex. METHODS: Female and male C57 BL/J mice on normal diet were supplemented with or without a combination of fructo-oligosaccharides (FOS) and galacto-oligosaccharides (GOS) during 3- and 4-week chronic restraint stress (CRS) treatment, respectively. C57 BL/J mice on normal diet without CRS were used as controls. Behavior consequences, gut microbiota, dysfunction of gut and brain-blood barriers, and inflammatory profiles were measured. RESULTS: In the 3rd week, FOS + GOS administration attenuated stress-induced anxiety-like behavior in female, but not in male mice, and the anxiolytic effects in males were observed until the 4th week. However, protective effects of prebiotics on CRS-induced depression were not observed. Changes in the gene expression of tight junction proteins in the distal colon and hippocampus, and decreased number of colon goblet cells following CRS were restored by prebiotics only in females. In both female and male mice, prebiotics alleviated stress-induced BBB dysfunction and elevation in pro-inflammatory cytokines levels, and modulated gut microbiota caused by stress. Furthermore, correlation analysis revealed that anxiety-like behaviors were significantly correlated with levels of pro-inflammatory cytokines and gene expression of tight junction proteins in the hippocampus of female mice, and the abundance of specific gut microbes was also correlated with anxiety-like behaviors, pro-inflammatory cytokines, and gene expression of tight junction proteins in the hippocampus of female mice. CONCLUSION: Female mice were more vulnerable to stress and prebiotics than males. The gut microbiota, gut and blood-brain barrier, and inflammatory response may mediate the protective effects of prebiotics on anxiety-like behaviors in female mice.


Assuntos
Ansiolíticos , Prebióticos , Feminino , Masculino , Camundongos , Animais , Barreira Hematoencefálica/metabolismo , Depressão/etiologia , Depressão/metabolismo , Caracteres Sexuais , Ansiedade/etiologia , Citocinas/metabolismo , Oligossacarídeos/farmacologia
4.
J Affect Disord ; 325: 256-263, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36638964

RESUMO

BACKGROUND: The dysregulation of the dopamine system contributes to depressive-like behaviors in rats, and the neurological functions regulated by hypocretin are severely affected in depression. However, whether suvorexant plays a role in alleviating depression by affecting the dopamine system is unclear. METHODS: To preliminarily explore the mechanism of suvorexant (10 mg/kg) in the treatment of depression, the mRNA and protein expression of TH, Drd2, Drd3, GluN2A, DAT, and GluN2B in the striatum of rats was quantified by qPCR and western blotting. The plasma hypocretin-1 and dopamine levels and the striatal dopamine levels were determined by ELISA. RESULTS: i) Compared to those of the control group, chronic unpredictable mild stress (CUMS) rats showed depressive-like behaviors, which were subsequently reversed by treatment with suvorexant. ii) The mRNA and protein expressions of TH, Drd2, Drd3, GluN2A, and GluN2B in the striatum of CUMS were significantly increased compared with those in the controls, but decreased after suvorexant treatment. iii) Compared with those in the control group, the plasma and striatal dopamine levels of CUMS decreased while plasma hypocretin-1 levels increased, which was reversed after suvorexant treatment. LIMITATIONS: i) The suvorexant is a dual hypocretin receptor antagonist; however, the responsible receptor is unclear. ii) We only focused on related factors in the striatum but did not explore other brain regions, nor did we directly explore the relationship among these factors. CONCLUSION: Depressive-like behaviors induced by CUMS can be reversed by suvorexant, and the therapeutic effects of suvorexant may be mediated by affecting the dopamine system.


Assuntos
Depressão , Dopamina , Animais , Ratos , Depressão/tratamento farmacológico , Depressão/metabolismo , Modelos Animais de Doenças , Dopamina/metabolismo , Hipocampo/metabolismo , Orexinas/metabolismo , Ratos Sprague-Dawley , RNA Mensageiro/metabolismo , Estresse Psicológico/metabolismo
5.
Psychiatry Clin Neurosci ; 77(3): 149-159, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36436207

RESUMO

AIM: Clinical and preclinical studies suggest that alterations in the peripheral and brain immune system are associated with the pathophysiology of depression, also leading to changes in local glucose metabolism in the brain. Here, the authors identified Yin-Yang 1 (YY1), a transcription factor closely associated with central and peripheral inflammation. METHODS: Plasma levels of YY1, interleukin (IL) 6, and IL-1ß in major depressive disorder (MDD) were collected before and after treatment with vortioxetine, and correlation with clinical and cognitive scores was studied. Chronic unpredictable mild stress was treated with vortioxetine. Micropositron emission tomography (microPET) was used to analyze glucose metabolism and mRNA, and the protein level of the YY1-nuclear factor κB (NF-κB)-IL-1ß inflammatory pathway were measured in related brain regions. RESULTS: Plasma levels of YY1 and IL-1ß were significantly increased in MDD and decreased after treatment with vortioxetine. Meanwhile, the level of YY1 in plasma was negatively correlated with cognitive functions in patients with MDD and positively correlated with the level of IL-1ß in plasma. Compared with the control group, in chronic unpredictable mild stress rats, (microPET) analysis showed that the decrease of glucose metabolism in the hippocampus, entorhinal cortex, amygdala, striatum, and medial prefrontal cortex was reversed after treatment. mRNA and protein level of related molecular in YY1-NF-κB-IL-1ß inflammatory pathway decreased in the hippocampus and was reversed by vortioxetine. CONCLUSION: The current study suggests that the YY1-NF-κB-IL-1ß inflammatory pathway may play an essential role in both mood changes and cognitive impairment in depression, and may be associated with changes in glucose metabolism in emotion regulation and cognition. These findings provide new evidence for the inflammatory mechanisms of depression.


Assuntos
Disfunção Cognitiva , Transtorno Depressivo Maior , Animais , Ratos , Disfunção Cognitiva/complicações , Depressão/tratamento farmacológico , Transtorno Depressivo Maior/complicações , Glucose , Inflamação/complicações , Interleucina-6 , NF-kappa B , RNA Mensageiro/metabolismo , Fatores de Transcrição , Vortioxetina , Yin-Yang , Fator de Transcrição YY1/genética , Fator de Transcrição YY1/metabolismo
6.
J Affect Disord ; 323: 617-623, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36462609

RESUMO

BACKGROUND: Neuronavigation-guided high-dose repetitive transcranial magnetic stimulation (rTMS) could rapidly treat depressive patients with suicidal ideation. But the mechanism of rTMS still needs to be elucidated. This study aims to investigate if rTMS improves suicidal ideation and depressive symptoms by influencing brain-derived neurotrophic factor (BDNF), tropomysin receptor kinase B (TrkB) and VGF levels. METHODS: In the present 1-week study, 59 treatment-naive depressive patients with suicidal ideation were randomly assigned to the active (n = 31) or sham (n = 28) rTMS group. The severity of suicidal ideation and depression were measured by the Beck Scale for Suicide Ideation, the Hamilton Depression Rating Scale and Montgomery-Asberg Depression Rating Scale. Fasting venous blood samples were collected at baseline and after treatment. Serum protein concentrations of BDNF, TrkB and VGF were measured by enzyme linked immunosorbent assay. RESULTS: We found after treatment the levels of BDNF in the active rTMS group were higher than the sham group (p = 0.011), TrkB levels were decreased in the active group (p < 0.001), VGF levels were increased in the active group (p = 0.005). Post-treatment VGF levels in the active group were higher than the sham group (p = 0.008). However, there were no significant correlation between changes in BDNF, TrkB and VGF levels and the changes in clinical variables. LIMITATIONS: Participants taking medication may affect the results. CONCLUSIONS: Our results suggest that the BDNF-TrkB pathway and VGF may be implicated in the mechanisms underlying neuronavigation-guided rTMS for treating depressive patients with suicidal ideation.


Assuntos
Ideação Suicida , Estimulação Magnética Transcraniana , Humanos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fatores de Crescimento Neural , Neuronavegação , Estimulação Magnética Transcraniana/métodos
7.
Front Psychiatry ; 13: 1016735, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36405925

RESUMO

Background: Anhedonia, as the core endophenotype of major depressive disorder (MDD), is closely related to poor prognosis, but the mechanism of this feature remains to be understood. The aim of this study was to investigate the inflammatory factors and brain structural alterations in MDD patients with anhedonia and evaluate the relationship between these factors. Methods: We assessed the plasma levels of interleukin-1 beta (IL-1ß), interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) in MDD patients with anhedonia (n = 22), MDD patients without anhedonia (n = 20), and age- and sex-matched healthy controls (HCs, n = 20) by enzyme-linked immunosorbent assay kits. All participants underwent high-resolution brain magnetic resonance imaging (MRI) scans, and voxel-based morphometry (VBM) was used to evaluate their gray matter volume (GMV). We compared inflammatory factors and GMV among the three groups and explored their relationships in MDD patients with anhedonia. Results: Compared with those of HCs, plasma levels of IL-1ß were increased in patients with MDD independent of anhedonia features, while plasma levels of IL-6 were elevated in MDD patients with anhedonia only. Meanwhile, MDD patients with anhedonia exhibited reduced GMV in the left striatal structures compared to MDD patients without anhedonia and HCs. Moreover, a significant association was observed between increased plasma levels of IL-6 and decreased GMV of the left putamen in MDD patients with anhedonia. Conclusions: The present research outcomes suggest that anhedonia is associated with increased plasma levels of IL-6 and decreased GMV in the left striatal structures. In addition, this study demonstrates that GMV loss in the left putamen is related to increased plasma levels of IL-6 in MDD with anhedonia, which provides further insights into the possible mechanisms of anhedonia.

8.
Front Pharmacol ; 13: 888726, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36176456

RESUMO

Schisandrin is one of the main active compounds isolated from the fruit of Schisandrae chinensis Fructus, which is scientifically proven to have beneficial effects on Alzheimer's disease (AD) treatment at the cellular and whole organism level. However, the oral availability of schisandrin is very low, thus implying that the underlying mechanism of therapeutic effect on AD treatment is yet to be clarified fully. Therefore, we speculated that the therapeutic effect of schisandrin on AD is mainly by regulating the imbalance of the gut microbiota (GM). In this study, behavioral experiments and H&E staining were used to confirm the pharmacological effects of schisandrin on rats with AD. 16S rDNA gene sequencing and feces, plasma, and brain metabolomics techniques were utilized to investigate the therapeutic effects and the underlying mechanisms of schisandrin on cognitive impairment in rats with AD. The results indicated that schisandrin improved cognitive impairment and hippocampal cell loss in rats. The UPLC-QTOF/MS-based metabolomics studies of the feces, plasma, and brain revealed that 44, 96, and 40 potential biomarkers, respectively, were involved in the treatment mechanism of schisandrin. Schisandrin improved the metabolic imbalance in rats with AD, and the metabolic changes mainly affected the primary bile acid biosynthesis, sphingolipid metabolism, glycerophospholipid metabolism, and unsaturated fatty acid biosynthesis. Schisandrin can improve the GM structure disorder and increase the abundance of beneficial bacteria in the gut of rats with AD. The predictive metagenomics analysis indicated that the altered GM was mainly involved in lipid metabolism, steroid hormone biosynthesis, arachidonic acid metabolism, biosynthesis of unsaturated fatty acids, and bacterial invasion of epithelial cells. Spearman's correlation analysis showed a significant correlation between affected bacteria and metabolites in various metabolic pathways. Overall, the data underline that schisandrin improves the cognitive impairment in rats with AD by affecting the composition of the GM community, thus suggesting the potential therapeutic effect of schisandrin on the brain-gut axis in rats with AD at the metabolic level.

9.
Oxid Med Cell Longev ; 2022: 6362617, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35860432

RESUMO

Background: Alzheimer's disease places a heavy economic burden to healthcare systems around the world. However, the effective treatments are still lacking. Traditional Chinese medicines (TCM) of Schisandra chinensis and Acorus tatarinowii Schott have the pharmacological effects of sedation and neuroprotection and have been clinically proven to be effective in the treatment of AD. However, their main anti-Alzheimer's compounds and functional mechanisms remain unclear. Purpose: To elucidate the main therapeutic components and possible mechanisms of Sc-At in AD using a comprehensive strategy combining metabolomics and network pharmacology. Methods: First, the UPLC-QTOF/MS method was used to identify the main chemical constituents of Schisandra chinensis and Acorus tatarinowii Schott alcohol extracts in vitro and in vivo. Secondly, the theoretical active ingredients, targets, and pathways of Sc-At for AD treatment were predicted by network pharmacology methods. Finally, plasma metabolomics were detected by UPLC-QTOF/MS to analyze the differential metabolites and metabolic pathways related to Sc-At. Based on the analyses above, the anti-AD mechanism of Sc-At was explored. Results: A total of 95 chemical components were identified in Sc-At extracts in vitro, and 34 prototype drug components were detected in rat plasma; network pharmacology screening identified 14 drug components in line with the principle of Lipinski, of which 10 were present for in vitro drug composition analysis. For these 10 components, 58 AD disease targets were predicted, and 85 AD-related KEGG signaling pathways were enriched. Six core biomarkers of Sc-At (cis-8,11,14,17-eicosatetraenoic acid, prostaglandin H2, sphingosine 1-phosphate, enol-phenylpyruvate, 3-methoxytyrosine, and pristanoyl-CoA) were regulated to a normal state during the treatment of AD. Conclusion: The mechanism of Sc-At for the treatment of AD can be achieved by the effect of the 10 compounds of Sc-At on TNF, MAPK8, MAPK14, PTGS1, and other targets, thereby affecting arachidonic acid metabolism, neurotransmitters, and sphingolipid metabolism.


Assuntos
Acorus , Doença de Alzheimer , Schisandra , Acorus/química , Doença de Alzheimer/metabolismo , Animais , Cromatografia Líquida de Alta Pressão/métodos , Humanos , Farmacologia em Rede , Ratos , Schisandra/química
10.
J Sep Sci ; 45(10): 1656-1671, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35234356

RESUMO

Baihe-Dihuang Tang is a commonly prescribed remedy for depression. In this study, component screening with untargeted and targeted metabolomics was used to identify potential biomarkers for depression in chronic unpredictable mildly stressed rats. Using this novel identification method, the screening of organic acids, lily saponins, iridoids, and other ingredients formed the basis for subsequent metabolomics research. Baihe-Dihuang Tang supplementation in chronic unpredictable mild-stress-induced depression models, increased their body weight, sucrose preference, brain-derived neurotrophic factor deposition, and spatial exploring. Untargeted metabolomics revealed that Baihe-Dihuang Tang exerts its antidepressant effects by regulating the levels of lipids, organic acids, and its derivatives, and benzenoids in the brain, plasma, and urine of the depressed rats. Moreover, it also modulates the d-glutamine and d-glutamate metabolism and purine metabolism. Targeted metabolomics demonstrated significant reduction in l-glutamate levels in the brains of depressed rats. This could be a potential biomarker for depression. Baihe-Dihuang Tang alleviated depression by regulating the levels of l-glutamate, xanthine, and adenine in the brains of depressed rats. Together, these findings conclusively established the promising therapeutic effect of Baihe-Dihuang Tang on depression and also unraveled the underlying molecular mechanism of its potential antidepressant function.


Assuntos
Depressão , Medicamentos de Ervas Chinesas , Animais , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Biomarcadores , Depressão/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Ácido Glutâmico/metabolismo , Metabolômica/métodos , Ratos
11.
Transl Psychiatry ; 12(1): 8, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013099

RESUMO

The pathophysiology of major depressive disorder (MDD) remains obscure. Recently, the microbiota-gut-brain (MGB) axis's role in MDD has an increasing attention. However, the specific mechanism of the multi-level effects of gut microbiota on host metabolism, immunity, and brain structure is unclear. Multi-omics approaches based on the analysis of different body fluids and tissues using a variety of analytical platforms have the potential to provide a deeper understanding of MGB axis disorders. Therefore, the data of metagenomics, metabolomic, inflammatory factors, and MRI scanning are collected from the two groups including 24 drug-naïve MDD patients and 26 healthy controls (HCs). Then, the correlation analysis is performed in all omics. The results confirmed that there are many markedly altered differences, such as elevated Actinobacteria abundance, plasma IL-1ß concentration, lipid, vitamin, and carbohydrate metabolism disorder, and diminished grey matter volume (GMV) of inferior frontal gyrus (IFG) in the MDD patients. Notably, three kinds of discriminative bacteria, Ruminococcus bromii, Lactococcus chungangensis, and Streptococcus gallolyticus have an extensive correlation with metabolome, immunology, GMV, and clinical symptoms. All three microbiota are closely related to IL-1ß and lipids (as an example, phosphoethanolamine (PEA)). Besides, Lactococcus chungangensis is negatively related to the GMV of left IFG. Overall, this study demonstrate that the effects of gut microbiome exert in MDD is multifactorial.


Assuntos
Transtorno Depressivo Maior , Microbioma Gastrointestinal , Microbiota , Encéfalo , Substância Cinzenta , Humanos
12.
Psychiatry Res ; 307: 114326, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34896845

RESUMO

BACKGROUND: We aimed to characterize gut microbial alterations in depressed patients with bipolar disorder (BD) following quetiapine monotherapy and explored its potential for disease diagnosis and outcome prediction. METHODS: Fecal samples were obtained from 60 healthy individuals and 62 patients in acute depressive episodes. All patients received one-month quetiapine treatment after enrollment. The structure of gut microbiota was measured with metagenomic sequencing, and its correlation with clinical profiles and brain function as indicated by resting-state functional magnetic resonance imaging was analyzed. Random forest models based on bacterial species were constructed to distinguish patients from controls, and responders from non-responders, respectively. RESULTS: BD patients displayed specific alterations in gut microbial diversity and composition. Quetiapine treatment increased the diversity of microbial communities and changed the composition. The abundance of Clostridium bartlettii was negatively associated with age, baseline depression severity, while positively associated with spontaneous neural oscillation in the hippocampus. Tree-based classification models for (1) patients and controls and (2) responders and non-responders showed an area under the curve of 0.733 and 0.800, respectively. CONCLUSION: Our findings add new evidence to the existing literature regarding gut dysbiosis in BD and reveal the potential of microbe-based biomarkers for disease diagnosis and treatment outcome prediction.


Assuntos
Transtorno Bipolar , Microbioma Gastrointestinal , Transtorno Bipolar/diagnóstico , Transtorno Bipolar/tratamento farmacológico , Disbiose , Microbioma Gastrointestinal/genética , Humanos , Metagenômica , Resultado do Tratamento
13.
Front Psychiatry ; 12: 783091, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34916978

RESUMO

Objective: Depression is a common disorder with a high recurrence rate. Since the effect of sleep deprivation on depression in existing studies were inconsistent, the present study aimed to reassess the effects of SD on patients by performing a meta-analysis of updated research. Methods: PubMed, Embase, the Cochrane Library, and Web of Science were searched for articles before January 20th, 2021. Data on participant characteristics, SD characteristics, adjunctive method and tests for depression were extracted. A comprehensive analysis was conducted to assess the effect of SD on depression and subgroup analysis was used to determine the sources of heterogeneity. Results: In total, 8 articles were included. An SD time of <7 days slightly worsened depression levels [0.24 (-0.21, 0.69); I 2 = 0%; P = 0.43], a time of 7-14 days had antidepressant effects [-1.52 (-2.07, -0.97); I 2 = 19.6%; P = 0.288], and a time of more than 14 days also worsened depression [0.76 (0.12, 1.40); I 2 = 43.7%; P = 0.169]. Conclusion: SD may serve as an effective antidepressant measure in humans when the time was 7-14 days, while a time of <7 days and more than 14 days worsened depression.

15.
Front Psychiatry ; 12: 676336, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34135789

RESUMO

As hypocretin can markedly affect neurophysiological and behavioural processes in mood disorders. However, few studies have measured changes in hypocretin levels in patients with mood disorders. We estimated the hypocretin-1 plasma levels in mood disorder patients and controls (CON) using an enzyme-linked immunosorbent assay. Results: (i) The hypocretin-1 plasma level was significantly higher in major depressive disorder (MDD) patients [59.04 (35.78-80.12) pg/ml, P < 0.001] and bipolar disorder (BD) patients [65.50 (58.46-74.57) pg/ml, P < 0.001] patients than in CON [49.25 (28.51-80.40) pg/ml]. Moreover, the plasma hypocretin-1 levels in the BD group were significantly higher than those in the MDD group (P < 0.001). (ii). In the MDD group, patients with higher suicidal ideation had higher hypocretin-1 levels [62.09 (38.23-80.12) pg/ml] than those with lower suicidal ideation [59.63 (35.79-77.37) pg/ml), P = 0.032]. (iii). Plasma hypocretin-1 levels were increased in both female and male mood disorder patients compared to CON [male: MDD 60.51 (35.79-80.12) pg/ml; BD 65.40 (58.76-74.14) pg/ml; CON 45.63 (28.51-62.05) pg/ml; all P < 0.016; female: MDD 57.37 (34.59-80.40) pg/ml; BD 65.61 (58.46-74.57) pg/ml; CON 52.92 (38.23-78.89) pg/ml; all P < 0.015]. (iv). In CON, we found a significant negative correlation between plasma hypocretin-1 levels and age (rho = -0.251, P = 0.032), while this negative correlation was absent in the MDD and BD groups. Limitations may partly arise from the relatively small sample size and the medication history of patients participating in our research. We concluded that the clear changes found in plasma hypocretin-1 levels might be applied in the diagnosis of depression and the differential diagnosis of MDD and BD. The clear suicidal-ideation-related change found in hypocretin-1 levels in depression might be taken into account in the prevention of suicidal behaviour and further study of hypocretin-targeted therapies.

16.
Schizophr Bull ; 47(5): 1310-1319, 2021 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-33974073

RESUMO

Hypocretin (also called orexin) regulates various functions, such as sleep-wake rhythms, attention, cognition, and energy balance, which show significant changes in schizophrenia (SCZ). We aimed to identify alterations in the hypocretin system in SCZ patients. We measured plasma hypocretin-1 levels in SCZ patients and healthy controls and found significantly decreased plasma hypocretin-1 levels in SCZ patients, which was mainly due to a significant decrease in female SCZ patients compared with female controls. In addition, we measured postmortem hypothalamic hypocretin-1-immunoreactivity (ir), ventricular cerebrospinal fluid (CSF) hypocretin-1 levels, and hypocretin receptor (Hcrt-R) mRNA expression in the superior frontal gyrus (SFG) in SCZ patients and controls We observed a significant decrease in the amount of hypothalamic hypocretin-1 ir in SCZ patients, which was due to decreased amounts in female but not male patients. Moreover, Hcrt-R2 mRNA in the SFG was decreased in female SCZ patients compared with female controls, while male SCZ patients showed a trend of increased Hcrt-R1 mRNA and Hcrt-R2 mRNA expression compared with male controls. We conclude that central hypocretin neurotransmission is decreased in SCZ patients, especially female patients, and this is reflected in the plasma.


Assuntos
Hipotálamo/metabolismo , Receptores de Orexina/metabolismo , Orexinas/metabolismo , Córtex Pré-Frontal/metabolismo , Esquizofrenia/metabolismo , Adulto , Autopsia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Orexinas/sangue , Esquizofrenia/sangue , Fatores Sexuais
17.
Front Immunol ; 12: 789647, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34992606

RESUMO

Tetratricopeptide repeat and ankyrin repeat containing 1 (TRANK1) is a robust risk gene of bipolar disorder (BD). However, little is known on the role of TRANK1 in the pathogenesis of BD and whether the gut microbiota is capable of regulating TRANK1 expression. In this study, we first investigated the serum mRNA level of TRANK1 in medication-free patients with a depressive episode of BD, then a mice model was constructed by fecal microbiota transplantation (FMT) to explore the effects of gut microbiota on brain TRANK1 expression and neuroinflammation, which was further verified by in vitro Lipopolysaccharide (LPS) treatment in BV-2 microglial cells and neurons. 22 patients with a depressive episode and 28 healthy individuals were recruited. Serum level of TRANK1 mRNA was higher in depressed patients than that of healthy controls. Mice harboring 'BD microbiota' following FMT presented depression-like phenotype. mRNA levels of inflammatory cytokines and TRANK1 were elevated in mice hippocampus and prefrontal cortex. In vitro, LPS treatment activated the secretion of pro-inflammatory factors in BV-2 cells, which was capable of upregulating the neuronal expression of TRANK1 mRNA. Moreover, primary cortical neurons transfected with plasmid Cytomegalovirus DNA (pcDNA3.1(+)) vector encoding human TRANK1 showed decreased dendritic spine density. Together, these findings add new evidence to the microbiota-gut-brain regulation in BD, indicating that microbiota is possibly involved in the neuropathogenesis of BD by modulating the expression of TRANK1.


Assuntos
Transtorno Bipolar/imunologia , Eixo Encéfalo-Intestino/imunologia , Citocinas/metabolismo , Depressão/imunologia , Microbioma Gastrointestinal/imunologia , Adolescente , Adulto , Animais , Transtorno Bipolar/sangue , Transtorno Bipolar/microbiologia , Transtorno Bipolar/patologia , Estudos de Casos e Controles , Linhagem Celular , Citocinas/análise , Depressão/sangue , Depressão/microbiologia , Depressão/patologia , Modelos Animais de Doenças , Transplante de Microbiota Fecal , Feminino , Voluntários Saudáveis , Hipocampo/imunologia , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Lipopolissacarídeos/imunologia , Masculino , Camundongos , Microglia/imunologia , Microglia/metabolismo , Neurônios/imunologia , Neurônios/metabolismo , Córtex Pré-Frontal/imunologia , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , Cultura Primária de Células , Adulto Jovem
18.
Sleep Med ; 77: 270-278, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32843299

RESUMO

OBJECTIVE: Currently, an efficient method for improving cognitive impairment due to sleep deprivation (SD) is lacking. The aim of this study is to evaluate the effect of high-frequency repetitive transcranial magnetic stimulation (rTMS) during SD on reversing the adverse effects of SD. METHODS: A total of 66 healthy people were randomized into the rTMS group and sham group. Both groups were deprived of sleep for 24 h. During SD, participants were asked to complete several cognitive tasks and underwent mood assessments. Saliva cortisol levels, plasma concentrations of brain-derived neurotrophic factor (BDNF), precursor BDNF (proBDNF), and tissue-type plasminogen activator (tPA), and frontal blood activation were detected before and after SD. The rTMS group received real rTMS stimulation for 2 sessions of 10 Hz rTMS (40 trains of 50 pulses with a 20-second intertrain interval) to the left dorsolateral prefrontal cortex and the sham group received sham stimulation during SD. RESULTS: Twenty-four hours of SD induced a reduced accuracy in the n-back task, increases in both anxiety and depression, increased cortisol levels, decreased frontal blood activation and decreased BDNF levels in healthy people. Notably, rTMS improved the hyperactivity of the hypothalamic-pituitary-adrenal axis and decreased frontal blood activation induced by SD, and reduced the consumption of plasma proBDNF. CONCLUSIONS: Twenty-four hours of SD induced a cognitive impairment. The administration of high-frequency rTMS during sleep deprivation exerted positive effects on HPA axis and frontal activation and might help alleviate cognitive impairment in the long term.


Assuntos
Disfunção Cognitiva , Sistema Hipotálamo-Hipofisário , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/terapia , Humanos , Sistema Hipófise-Suprarrenal , Córtex Pré-Frontal , Privação do Sono , Estimulação Magnética Transcraniana
19.
Sci Adv ; 6(49)2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33268363

RESUMO

Gut microbiome disturbances have been implicated in major depressive disorder (MDD). However, little is known about how the gut virome, microbiome, and fecal metabolome change, and how they interact in MDD. Here, using whole-genome shotgun metagenomic and untargeted metabolomic methods, we identified 3 bacteriophages, 47 bacterial species, and 50 fecal metabolites showing notable differences in abundance between MDD patients and healthy controls (HCs). Patients with MDD were mainly characterized by increased abundance of the genus Bacteroides and decreased abundance of the genera Blautia and Eubacterium These multilevel omics alterations generated a characteristic MDD coexpression network. Disturbed microbial genes and fecal metabolites were consistently mapped to amino acid (γ-aminobutyrate, phenylalanine, and tryptophan) metabolism. Furthermore, we identified a combinatorial marker panel that robustly discriminated MDD from HC individuals in both the discovery and validation sets. Our findings provide a deep insight into understanding of the roles of disturbed gut ecosystem in MDD.


Assuntos
Transtorno Depressivo Maior , Microbioma Gastrointestinal , Microbiota , Bactérias/genética , Transtorno Depressivo Maior/genética , Microbioma Gastrointestinal/genética , Humanos , Metagenoma , Metagenômica
20.
J Affect Disord ; 277: 204-211, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32829196

RESUMO

BACKGROUND: Cognitive impairment has long challenged the patients with major depressive disorder (MDD), hypocretins and inflammation have recently been implicated in cognitive function. However, limited studies have compressively assessed their associations with cognitive impairment in MDD. METHODS: A total of 100 MDD patients and 100 healthy controls (HC) were recruited for this study. They were tested with HAMD, HAMA, and MCCB scales. The plasma level of selected inflammatory factors (IL-1ß, IL-6, and TNF-α) and hypocretin-1 were determined using enzyme-linked immunosorbent assay (ELISA). Correlation analysis was performed to explore the relationship between the plasma level of the factors and clinical performances. RESULTS: Patients with MDD showed cognitive impairment in each MCCB subdomain except working memory compared with HC. The levels of IL-6, IL-1ß and hypocretin-1 in MDD patients were higher than HC. Besides, IL-1ß levels was negatively correlated with overall cognitive function in the combined group. Hypocretin-1 was positively correlated with socially cognitive impairment in MDD patients. A negative correlation between plasma hypocretin-1 levels and HAMA scales was also observed in MDD patients. LIMITATION: The study was cross-sectional, thereby limiting causal inference, and had a relatively small sample size. There are no subcategories for MDD based on characteristics. CONCLUSION: IL-1ß, IL-6 and Hypocretin-1 were reported as potential factors involved in MDD pathology. Hypocretin-1 could contribute to the biological mechanisms of anxiety relief. Hypocretin-1, therefore, may be important in exploring the pathological mechanisms of social cognitive impairment in MDD patients. Conclusively, this study provides new insights for exploring cognitive impairment in depression.


Assuntos
Disfunção Cognitiva , Transtorno Depressivo Maior , Disfunção Cognitiva/etiologia , Estudos Transversais , Depressão , Humanos , Interleucina-6 , Orexinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA