RESUMO
The cardiovascular and renovascular complications of metabolic deterioration are associated with localized adipose tissue dysfunction. We have previously demonstrated that metabolic impairment delineated the heightened vulnerability of both the perivascular (PVAT) and perirenal adipose tissue (PRAT) depots to hypoxia and inflammation, predisposing to cardioautonomic, vascular and renal deterioration. Interventions either addressing underlying metabolic disturbances or halting adipose tissue dysfunction rescued the observed pathological and functional manifestations. Several lines of evidence implicate adipose tissue thromboinflammation, which entails the activation of the proinflammatory properties of the blood clotting cascade, in the pathogenesis of metabolic and cardiovascular diseases. Despite offering valuable tools to interrupt the thromboinflammatory cycle, there exists a significant knowledge gap regarding the potential pleiotropic effects of anticoagulant drugs on adipose inflammation and cardiovascular function. As such, a systemic investigation of the consequences of PVAT and PRAT thromboinflammation and its interruption in the context of metabolic disease has not been attempted. Here, using an established prediabetic rat model, we demonstrate that metabolic disturbances are associated with PVAT and PRAT thromboinflammation in addition to cardioautonomic, vascular and renal functional decline. Administration of rivaroxaban, a FXa inhibitor, reduced PVAT and PRAT thromboinflammation and ameliorated the cardioautonomic, vascular and renal deterioration associated with prediabetes. Our present work outlines the involvement of PVAT and PRAT thromboinflammation during early metabolic derangement and offers novel perspectives into targeting adipose tissue thrombo-inflammatory pathways for the management its complications in future translational efforts.
Assuntos
Estado Pré-Diabético , Trombose , Doenças Vasculares , Ratos , Animais , Tromboinflamação , Inflamação/patologia , Trombose/metabolismo , Doenças Vasculares/metabolismo , Tecido Adiposo/metabolismoRESUMO
AIMS: Prostate cancer is among the highest incidence malignancies in men with a prevalence rate increasing in parallel to the rising global trends in metabolic disorders. Whereas a sizeable body of evidence links metabolic impairment to negative prognosis of prostate cancer, the molecular mechanism underlying this connection has not been thoroughly examined. Our previous work showed that localized adipose tissue inflammation occurring in select adipose depots in early metabolic derangement instigated significant molecular, structural, and functional alterations in neighboring tissues underlying the complications observed at this stage. In this context, the periprostatic adipose tissue (PPAT) constitutes an understudied microenvironment with potential influence on the prostatic milieu. MAIN METHODS AND RESULTS: We show that PPAT inflammation occurs in early prediabetes with signs of increased thrombogenic activity including enhanced expression and function of Factor X. This was mirrored by early neoplastic alterations in the prostate with fibrosis, increased epithelial thickness with marked luminal cellular proliferation and enhanced formation of intraepithelial neoplasia. Significantly, interruption of the procoagulant state in PPAT by a 10-day anticoagulant rivaroxaban treatment not only mitigated PPAT inflammation, but also reduced signs of prostatic neoplastic changes. Moreover, rivaroxaban decreased the murine PLum-AD epithelial prostatic cell viability, proliferation, migration, and colony forming capacity, while increasing oxidative stress. A protease-activated receptor-2 agonist reversed some of these effects. SIGNIFICANCE: We provide some evidence of a molecular framework for the crosstalk between PPAT and prostatic tissue leading to early neoplastic changes in metabolic impairment mediated by upregulation of PPAT thromboinflammation.
Assuntos
Neoplasias da Próstata , Trombose , Masculino , Humanos , Animais , Camundongos , Rivaroxabana/farmacologia , Rivaroxabana/metabolismo , Tromboinflamação , Inflamação/patologia , Trombose/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Tecido Adiposo/metabolismo , Microambiente TumoralRESUMO
Background The complexity of the interaction between metabolic dysfunction and cardiovascular complications has long been recognized to extend beyond simple perturbations of blood glucose levels. Yet, structured interventions targeting the root pathologies are not forthcoming. Growing evidence implicates the inflammatory changes occurring in perivascular adipose tissue (PVAT) as early instigators of cardiovascular deterioration. Methods and Results We used a nonobese prediabetic rat model with localized PVAT inflammation induced by hypercaloric diet feeding, which dilutes inorganic phosphorus (Pi) to energy ratio by 50%, to investigate whether Pi supplementation ameliorates the early metabolic impairment. A 12-week Pi supplementation at concentrations equivalent to and twice as much as that in the control diet was performed. The localized PVAT inflammation was reversed in a dose-dependent manner. The increased expression of UCP1 (uncoupling protein1), HIF-1α (hypoxia inducible factor-1α), and IL-1ß (interleukin-1ß), representing the hallmark of PVAT inflammation in this rat model, were reversed, with normalization of PVAT macrophage polarization. Pi supplementation restored the metabolic efficiency consistent with its putative role as an UCP1 inhibitor. Alongside, parasympathetic autonomic and cerebrovascular dysfunction function observed in the prediabetic model was reversed, together with the mitigation of multiple molecular and histological cardiovascular damage markers. Significantly, a Pi-deficient control diet neither induced PVAT inflammation nor cardiovascular dysfunction, whereas Pi reinstatement in the diet after a 10-week exposure to a hypercaloric low-Pi diet ameliorated the dysfunction. Conclusions Our present results propose Pi supplementation as a simple intervention to reverse PVAT inflammation and its early cardiovascular consequences, possibly through the interference with hypercaloric-induced increase in UCP1 expression/activity.
Assuntos
Tecido Adiposo , Suplementos Nutricionais , Inflamação , Fósforo , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Animais , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/prevenção & controle , Inflamação/complicações , Inflamação/prevenção & controle , Doenças Metabólicas/prevenção & controle , Fósforo/uso terapêutico , Estado Pré-Diabético , RatosRESUMO
Diabetic nephropathy is a major health challenge with considerable economic burden and significant impact on patients' quality of life. Despite recent advances in diabetic patient care, current clinical practice guidelines fall short of halting the progression of diabetic nephropathy to end-stage renal disease. Moreover, prior literature reported manifestations of renal dysfunction in early stages of metabolic impairment prior to the development of hyperglycemia indicating the involvement of alternative pathological mechanisms apart from those typically triggered by high blood glucose. Here, we extend our prior research work implicating localized inflammation in specific adipose depots in initiating cardiovascular dysfunction in early stages of metabolic impairment. Non-obese prediabetic rats showed elevated glomerular filtration rates and mild proteinuria in absence of hyperglycemia, hypertension, and signs of systemic inflammation. Isolated perfused kidneys from these rats showed impaired renovascular endothelial feedback in response to vasopressors and increased flow. While endothelium dependent dilation remained functional, renovascular relaxation in prediabetic rats was not mediated by nitric oxide and prostaglandins as in control tissues, but rather an upregulation of the function of epoxy eicosatrienoic acids was observed. This was coupled with signs of peri-renal adipose tissue (PRAT) inflammation and renal structural damage. A two-week treatment with non-hypoglycemic doses of metformin or pioglitazone, shown previously to ameliorate adipose inflammation, not only reversed PRAT inflammation in prediabetic rats, but also reversed the observed functional, renovascular, and structural renal abnormalities. The present results suggest that peri-renal adipose inflammation triggers renal dysfunction early in the course of metabolic disease.
Assuntos
Tecido Adiposo/metabolismo , Nefropatias Diabéticas/metabolismo , Modelos Animais de Doenças , Hipoglicemiantes/uso terapêutico , Rim/metabolismo , Estado Pré-Diabético/metabolismo , Tecido Adiposo/efeitos dos fármacos , Animais , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/etiologia , Ingestão de Energia/fisiologia , Hipoglicemiantes/farmacologia , Inflamação/tratamento farmacológico , Inflamação/etiologia , Inflamação/metabolismo , Rim/efeitos dos fármacos , Masculino , Obesidade , Estado Pré-Diabético/tratamento farmacológico , Ratos , Ratos Sprague-DawleyRESUMO
Cardiac autonomic neuropathy (CAN) is an early cardiovascular manifestation of type 2 diabetes (T2D) that constitutes an independent risk factor for cardiovascular mortality and morbidity. Nevertheless, its underlying pathophysiology remains poorly understood. We recently showed that localized perivascular adipose tissue (PVAT) inflammation underlies the incidence of parasympathetic CAN in prediabetes. Here, we extend our investigation to provide a mechanistic framework for the evolution of autonomic impairment as the metabolic insult worsens. Early metabolic dysfunction was induced in rats fed a mild hypercaloric diet. Two low-dose streptozotocin injections were used to evoke a state of late decompensated T2D. Cardiac autonomic function was assessed by invasive measurement of baroreflex sensitivity using the vasoactive method. Progression into T2D was associated with aggravation of CAN to include both sympathetic and parasympathetic arms. Unlike prediabetic rats, T2D rats showed markers of brainstem neuronal injury and inflammation as well as increased serum levels of IL-1ß. Experiments on PC12 cells differentiated into sympathetic-like neurons demonstrated that brainstem injury observed in T2D rats resulted from exposure to possible proinflammatory mediators in rat serum rather than a direct effect of the altered metabolic profile. CAN and the associated cardiovascular damage in T2D only responded to combined treatment with insulin to manage hyperglycemia in addition to a nonhypoglycemic dose of metformin or pioglitazone providing an anti-inflammatory effect, coincident with the effect of these combinations on serum IL-1ß. Our present results indicate that CAN worsening upon progression to T2D involves brainstem inflammatory changes likely triggered by systemic inflammation.
Assuntos
Barorreflexo/fisiologia , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Tipo 2/fisiopatologia , Neuropatias Diabéticas/fisiopatologia , Hipoglicemiantes/uso terapêutico , Inflamação/fisiopatologia , Animais , Barorreflexo/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/tratamento farmacológico , Neuropatias Diabéticas/sangue , Neuropatias Diabéticas/tratamento farmacológico , Progressão da Doença , Hemodinâmica/efeitos dos fármacos , Hemodinâmica/fisiologia , Hipoglicemiantes/administração & dosagem , Inflamação/sangue , Inflamação/tratamento farmacológico , Insulina/administração & dosagem , Insulina/uso terapêutico , Interleucina-1beta/sangue , Masculino , Pioglitazona/administração & dosagem , Pioglitazona/uso terapêutico , Ratos , Ratos Sprague-DawleyRESUMO
Cardiac autonomic neuropathy (CAN) is an early cardiovascular complication of diabetes occurring before metabolic derangement is evident. The cause of CAN remains elusive and cannot be directly linked to hyperglycemia. Recent clinical data report cardioprotective effects of some antidiabetic drugs independent of their hypoglycemic action. Here, we used a rat model receiving limited daily increase in calories from fat (HC diet) to assess whether mild metabolic challenge led to CAN in absence of interfering effects of hyperglycemia, glucose intolerance, or obesity. Rats receiving HC diet for 12 weeks showed reduction in baroreceptor sensitivity and heart rate variability despite lack of change in baseline hemodynamic and cardiovascular structural parameters. Impairment of cardiac autonomic control was accompanied with perivascular adipose inflammation observed as an increased inflammatory cytokine expression, together with increased cardiac oxidative stress, and signaling derangement characteristic of diabetic cardiomyopathy. Two-week treatment with metformin or pioglitazone rectified the autonomic derangement and corrected the molecular changes. Switching rats to normal chow but not to isocaloric amounts of HC for two weeks reversed CAN. As such, we conclude that adipose inflammation due to increased fat intake might underlie development of CAN and, hence, the beneficial effects of metformin and pioglitazone.