Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 15(5): 1188-1194, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38270396

RESUMO

Singlet fission (SF) is the process of converting an excited singlet to a pair of excited triplets. Harvesting two charges from a single photon has the potential to increase photovoltaic device efficiencies. Acenes, such as tetracene and pentacene, are model molecules for studying SF. Despite SF being an endoergic process for tetracene and exoergic for pentacene, both acenes exhibit near unity SF quantum efficiencies, raising questions about how tetracene can overcome the energy barrier. Here, we use recently developed instrumentation to measure inelastic neutron scattering (INS) while optically exciting the model molecules using two different excitation energies. The spectroscopic results reveal intermolecular structural relaxation due to the presence of a triplet excited state. The structural dynamics of the combined excited state molecule and surrounding tetracene molecules are further studied using time-dependent density functional theory (TD-DFT), which shows that the singlet and triplet levels shift due to the excited state geometry, reducing the uphill energy barrier for SF to within kT.

2.
Rev Sci Instrum ; 94(8)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38065149

RESUMO

Beamlines are facilities that produce and deliver highly focused and intense beams of radiation, typically x rays, synchrotron radiation, or neutrons, for scientific research purposes. Millions of dollars are spent annually to maintain and operate these scientific beamlines, oftentimes running continuously between cycles. To reduce human intervention and improve productivity, mechanical sample changers are often commissioned for use. Designing sample changers is difficult because mechanical parts can be bulky, expensive, and challenging to design for instruments with low volume access, high radiation, and cryogenic environments. We present a portable and inexpensive sample changer stick that can hold and manipulate up to four samples, specifically designed for use with cryogenic closed-cycle refrigerators. The sample changer stick enables rapid and efficient exchange of samples without manual intervention, and is compatible with standard sample mounts such as vanadium cans. The sample changer stick includes a motorized rotation and lancing mechanism, which enables the precise positioning of each sample in the neutron beam, while ensuring compatibility with the operating temperatures and vacuum conditions required for closed-cycle refrigerators. The design has been successfully tested at the VISION beamline at the Spallation Neutron Source. The mechanical action and software controls are detailed. The sample changer stick is a valuable tool for scientists working with cryogenic closed-cycle refrigerators.

3.
Rev Sci Instrum ; 94(8)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37540123

RESUMO

Every material experiences atomic and molecular motions that are generally termed vibrations in gases and liquids or phonons in solid state materials. Optical spectroscopy techniques, such as Raman, infrared absorption spectroscopy, or inelastic neutron scattering (INS), can be used to measure the vibrational/phonon spectrum of ground state materials properties. A variety of optical pump probe spectroscopies enable the measurement of excited states or elucidate photochemical reaction pathways and kinetics. So far, it has not been possible to study photoactive materials or processes in situ using INS due to the mismatch between neutron and photon penetration depths, differences between the flux density of photons and neutrons, cryogenic temperatures for INS measurements, vacuum conditions, and a lack of optical access to the sample space. These experimental hurdles have resulted in very limited photochemistry studies using INS. Here we report on the design of two different photochemistry sample sticks that overcome these experimental hurdles to enable in situ photochemical studies using INS, specifically at the VISION instrument at Oak Ridge National Laboratory. We demonstrate the use of these new measurement capabilities through (1) the in situ photodimerization of anthracene and (2) the in situ photopolymerization of a 405 nm photoresin using 405 nm excitation as simple test cases. These new measurement apparatus broaden the science enabled by INS to include photoactive materials, optically excited states, and photoinitiated reactions.

4.
Mater Horiz ; 10(1): 187-196, 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36330997

RESUMO

Metal organic frameworks (MOFs) that incorporate metal oxide cluster nodes, exemplified by UiO-66, have been widely studied, especially in terms of their deviations from the ideal, defect-free crystalline structures. Although defects such as missing linkers, missing nodes, and the presence of adventitious synthesis-derived node ligands (such as acetates and formates) have been proposed, their exact structures remain unknown. Previously, it was demonstrated that defects are correlated and span multiple unit cells. The highly specialized techniques used in these studies are not easily applicable to other MOFs. Thus, there is a need to develop new experimental and computational approaches to understand the structure and properties of defects in a wider variety of MOFs. Here, we show how low-frequency phonon modes measured by inelastic neutron scattering (INS) spectroscopy can be combined with density functional theory (DFT) simulations to provide unprecedented insights into the defect structure of UiO-66. We are able to identify and assign peaks in the fingerprint region (<100 cm-1) which correspond to phonon modes only present in certain defective topologies. Specifically, this analysis suggests that our sample of UiO-66 consists of predominantly defect-free fcu regions with smaller domains corresponding to a defective bcu topology with 4 and 2 acetate ligands bound to the Zr6O8 nodes. Importantly, the INS/DFT approach provides detailed structural insights (e.g., relative positions and numbers of acetate ligands) that are not accessible with microscopy-based techniques. The quantitative agreement between DFT simulations and the experimental INS spectrum combined with the relative simplicity of sample preparation, suggests that this methodology may become part of the standard and preferred protocol for the characterization of MOFs, and, in particular, for elucidating the structure defects in these materials.

5.
J Phys Chem Lett ; 13(24): 5530-5537, 2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35695809

RESUMO

Knowledge of the full phonon spectrum is essential to accurately calculate the dynamic disorder (σ) and hole mobility (µh) in organic semiconductors (OSCs). However, most vibrational spectroscopy techniques under-measure the phonons, thus limiting the phonon validation. Here, we measure and model the full phonon spectrum using multiple spectroscopic techniques and predict µh using σ from only the Γ-point and the full Brillouin zone (FBZ). We find that only inelastic neutron scattering (INS) provides validation of all phonon modes, and that σ in a set of small molecule semiconductors can be miscalculated by up to 28% when comparing Γ-point against FBZ calculations. A subsequent mode analysis shows that many modes contribute to σ and that no single mode dominates. Our results demonstrate the importance of a thoroughly validated phonon calculation, and a need to develop design rules considering the full spectrum of phonon modes.

6.
J Chem Theory Comput ; 17(12): 7313-7320, 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34818006

RESUMO

Atomic vibrations can inform about materials properties from hole transport in organic semiconductors to correlated disorder in metal-organic frameworks. Currently, there are several methods for predicting these vibrations using simulations, but the accuracy-efficiency tradeoffs have not been examined in depth. In this study, rubrene is used as a model system to predict atomic vibrational properties using six different simulation methods: density functional theory, density functional tight binding, density functional tight binding with a Chebyshev polynomial-based correction, a trained machine learning model, a pretrained machine learning model called ANI-1, and a classical forcefield model. The accuracy of each method is evaluated by comparison to the experimental inelastic neutron scattering spectrum. All methods discussed here show some accuracy across a wide energy region, though the Chebyshev-corrected tight-binding method showed the optimal combination of high accuracy with low expense. We then offer broad simulation guidelines to yield efficient, accurate results for inelastic neutron scattering spectrum prediction.

7.
J Chem Inf Model ; 61(9): 4486-4496, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34449225

RESUMO

We describe an automated workflow that connects a series of atomic simulation tools to investigate the relationship between atomic structure, lattice dynamics, materials properties, and inelastic neutron scattering (INS) spectra. Starting from the atomic simulation environment (ASE) as an interface, we demonstrate the use of a selection of calculators, including density functional theory (DFT) and density functional tight binding (DFTB), to optimize the structures and calculate interatomic force constants. We present the use of our workflow to compute the phonon frequencies and eigenvectors, which are required to accurately simulate the INS spectra in crystalline solids like diamond and graphite as well as molecular solids like rubrene. We have also implemented a machine-learning force field based on Chebyshev polynomials called the Chebyshev interaction model for efficient simulation (ChIMES) to improve the accuracy of the DFTB simulations. We then explore the transferability of our DFTB/ChIMES models by comparing simulations derived from different training sets. We show that DFTB/ChIMES demonstrates ∼100× reduction in computational expense while retaining most of the accuracy of DFT as well as yielding high accuracy for different materials outside of our training sets. The DFTB/ChIMES method within the workflow expands the possibilities to use simulations to accurately predict materials properties of increasingly complex structures that would be unfeasible with ab initio methods.


Assuntos
Aprendizado de Máquina , Fenômenos Biofísicos , Simulação por Computador , Análise Espectral , Fluxo de Trabalho
8.
Sci Rep ; 11(1): 7938, 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33846390

RESUMO

Inelastic neutron scattering (INS) provides a weighted density of phonon modes. Currently, INS spectra can only be interpreted for perfectly crystalline materials because of high computational cost for electronic simulations. INS has the potential to provide detailed morphological information if sufficiently large volumes and appropriate structural variety are simulated. Here, we propose a method that allows direct comparison between INS data with molecular dynamics simulations, a simulation method that is frequently used to simulate semicrystalline/amorphous materials. We illustrate the technique by analyzing spectra of a well-studied conjugated polymer, poly(3-hexylthiophene-2,5-diyl) (P3HT) and conclude that our technique provides improved volume and structural variety, but that the classical force field requires improvement before the morphology can be accurately interpreted.

9.
ACS Nano ; 15(4): 7006-7020, 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33733736

RESUMO

Doping-induced solubility control (DISC) patterning is a recently developed technique that uses the change in polymer solubility upon doping, along with an optical dedoping process, to achieve high-resolution optical patterning. DISC patterning can produce features smaller than predicted by the diffraction limit; however, no mechanism has been proposed to explain such high resolution. Here, we use diffraction to spatially modulate the light intensity and determine the dissolution rate, revealing a superlinear dependence on light intensity. This rate law is independent of wavelength, indicating that patterning resolution is not dominated by an optical dedoping reaction, as was previously proposed. Instead we show here that the optical patterning mechanism is primarily controlled by the thermal profile generated by the laser. To quantify this effect, the thermal profile and dissolution rate are modeled using a finite-element model and compared against patterned line cross sections as a function of wavelength, laser intensity, and dwell time. Our model reveals that although the laser-generated thermal profile is broadened considerably beyond the profile of the laser, the highly temperature dependent dissolution rate results in selective dissolution near the peak of the thermal profile. Therefore, the key factor in achieving super-resolution patterning is a strongly temperature dependent dissolution rate, a common feature of many polymers. In addition to suggesting several routes to improved resolution, our model also demonstrates that doping is not required for optical patterning of conjugated polymers, as was previously believed. Instead, we demonstrate that superlinear resolution optical patterning should be attainable in any conjugated polymer simply by tuning the solvent quality during patterning, thus extending the applicability of our method to a wide class of materials. We demonstrate the generality of photothermal patterning by writing sub-400 nm features into undoped PffBT4T-2OD.

10.
J Phys Chem Lett ; 12(4): 1284-1289, 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33497232

RESUMO

High electron affinity (EA) molecules p-type dope low ionization energy (IE) polymers, resulting in an equilibrium doping level based on the energetic driving force (IE-EA), reorganization energy, and dopant concentration. Anion exchange doping (AED) is a process whereby the dopant anion is exchanged with a stable ion from an electrolyte. We show that the AED level can be predicted using an isotherm equilibrium model. The exchange of the dopant anion (FeCl3-) for a bis(trifluoromethanesulfonamide) (TFSI-) anion in the polymers poly(3-hexylthiophene-2,5-diyl) (P3HT) and poly[3-(2,2-bithien-5-yl)-2,5-bis(2-hexyldecyl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione-6,5-diyl] (PDPP-2T) highlights two cases in which the process is nonspontaneous and spontaneous, respectively. For P3HT, FeCl3 provides a high doping level but an unstable counterion, so exchange results in an air stable counterion with a marginal increase in doping. For PDPP-2T, FeCl3 is a weak dopant, but the exchange of FeCl3- for TFSI- is spontaneous, so the doping level increases by >10× with AED.

11.
Adv Sci (Weinh) ; 7(15): 2000960, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32775168

RESUMO

The ever increasing library of materials systems developed for organic solar-cells, including highly promising non-fullerene acceptors and new, high-efficiency donor polymers, demands the development of methodologies that i) allow fast screening of a large number of donor:acceptor combinations prior to device fabrication and ii) permit rapid elucidation of how processing affects the final morphology/microstructure of the device active layers. Efficient, fast screening will ensure that important materials combinations are not missed; it will accelerate the technological development of this alternative solar-cell platform toward larger-area production; and it will permit understanding of the structural changes that may occur in the active layer over time. Using the relatively high-efficiency poly[(5,6-difluoro-2,1,3-benzothiadiazol-4,7-diyl)-alt-(3,3'''-di(2-octyldodecyl)-2,2';5',2'';5'',2'''-quaterthiophen-5,5'''-diyl)] (PCE11):phenyl-C61-butyric acid-methyl-ester acceptor (PCBM) blend systems, it is demonstrated that by means of straight-forward thermal analysis, vapor-phase-infiltration imaging, and transient-absorption spectroscopy, various blend compositions and processing methodologies can be rapidly screened, information on promising combinations can be obtained, reliability issues with respect to reproducibility of thin-film formation can be identified, and insights into how processing aids, such as nucleating agents, affect structure formation, can be gained.

12.
J Chem Theory Comput ; 16(6): 3494-3503, 2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32401495

RESUMO

Charge mobility of crystalline organic semiconductors (OSC) is limited by local dynamic disorder. Recently, the charge mobility for several high mobility OSCs, including TIPS-pentacene, were accurately predicted from a density functional theory (DFT) simulation constrained by the crystal structure and the inelastic neutron scattering spectrum, which provide direct measures of the structure and the dynamic disorder in the length scale and energy range of interest. However, the computational expense required for calculating all of the atomic and molecular forces is prohibitive. Here we demonstrate the use of density functional tight binding (DFTB), a semiempirical quantum mechanical method that is 2 to 3 orders of magnitude more efficient than DFT. We show that force matching a many-body interaction potential to DFT derived forces yields highly accurate DFTB models capable of reproducing the low-frequency intricacies of experimental inelastic neutron scattering (INS) spectra and accurately predicting charge mobility. We subsequently predicted charge mobilities from our DFTB model of a number of previously unstudied structural analogues to TIPS-pentacene using dynamic disorder from DFTB and transient localization theory. The approach we establish here could provide a truly rapid simulation pathway for accurate materials properties prediction, in our vision applied to new OSCs with tailored properties.

13.
ACS Appl Mater Interfaces ; 11(44): 41717-41725, 2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31619041

RESUMO

Organic semiconductors (OSCs) offer a new avenue to the next-generation electronics, but the lack of a scalable and inexpensive nanoscale patterning/deposition technique still limits their use in electronic applications. Recently, a new lithographic etching technique has been introduced that uses molecular dopants to reduce semiconducting polymer solubility in solvents and a direct-write laser to remove dopants locally, enabling rapid OSC etching with diffraction limited resolution. Previous publications postulated that the reaction that enables patterning is a photochemical reaction between photoexcited dopants with neutral solvent molecules. In this work, we analyze the photoinduced dissolution kinetics of F4TCNQ doped P3HT films using time-resolved in situ optical probing. We find two competing mechanisms that control de-doping and dissolution: the first is the photochemical reaction posited in the literature, and the second involves direct heating of the polymer by the laser, inducing increased solubility for both the polymer and dopant. We show that the wavelength-specific photochemical effect is dominant in low photon doses while the photothermal effect is dominant with high excitation rates regardless of laser wavelength. With sufficiently high optical intensity input, the photothermal mechanism can in principle achieve a high writing speed up to 1 m/s. Our findings bring new insights into the mechanisms behind laser direct writing of OSCs based on dopant induced solubility control and enable ultraprecise fabrications of various device configurations in large-scale manufacturing.

14.
Nat Mater ; 18(2): 149-155, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30643236

RESUMO

Molecular doping is a crucial tool for controlling the charge-carrier concentration in organic semiconductors. Each dopant molecule is commonly thought to give rise to only one polaron, leading to a maximum of one donor:acceptor charge-transfer complex and hence an ionization efficiency of 100%. However, this theoretical limit is rarely achieved because of incomplete charge transfer and the presence of unreacted dopant. Here, we establish that common p-dopants can in fact accept two electrons per molecule from conjugated polymers with a low ionization energy. Each dopant molecule participates in two charge-transfer events, leading to the formation of dopant dianions and an ionization efficiency of up to 200%. Furthermore, we show that the resulting integer charge-transfer complex can dissociate with an efficiency of up to 170%. The concept of double doping introduced here may allow the dopant fraction required to optimize charge conduction to be halved.

15.
Adv Mater ; 29(42)2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28921668

RESUMO

The field of organic electronics thrives on the hope of enabling low-cost, solution-processed electronic devices with mechanical, optoelectronic, and chemical properties not available from inorganic semiconductors. A key to the success of these aspirations is the ability to controllably dope organic semiconductors with high spatial resolution. Here, recent progress in molecular doping of organic semiconductors is summarized, with an emphasis on solution-processed p-type doped polymeric semiconductors. Highlighted topics include how solution-processing techniques can control the distribution, diffusion, and density of dopants within the organic semiconductor, and, in turn, affect the electronic properties of the material. Research in these areas has recently intensified, thanks to advances in chemical synthesis, improved understanding of charged states in organic materials, and a focus on relating fabrication techniques to morphology. Significant disorder in these systems, along with complex interactions between doping and film morphology, is often responsible for charge trapping and low doping efficiency. However, the strong coupling between doping, solubility, and morphology can be harnessed to control crystallinity, create doping gradients, and pattern polymers. These breakthroughs suggest a role for molecular doping not only in device function but also in fabrication-applications beyond those directly analogous to inorganic doping.

16.
Adv Mater ; 29(2)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27740691

RESUMO

Doping-induced solubility control is a patterning technique for semiconducting polymers, which utilizes the reduction in polymer solubility upon p-type doping to provide direct, optical control of film topography and doping level. In situ direct-write patterning and imaging are demonstrated, revealing sub-diffraction-limited topographic features. Photoinduced force microscopy shows that doping level can be optically modulated with similar resolution.

17.
J Phys Chem Lett ; 7(21): 4297-4303, 2016 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-27731993

RESUMO

Doping-induced solubility control (DISC) is a recently introduced photolithographic technique for semiconducting polymers, which utilizes reversible changes in polymer solubility upon doping to allow the polymer to function as its own photoresist. Central to this process is a wavelength sensitive optical dedoping reaction, which is poorly understood but generates subdiffraction-limited topographic features and provides optical control of the polymer doping level. Here, we examine the mechanism of optical dedoping in the semiconducting polymer poly-3-hexylthiophene (P3HT) doped by 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ), via a combination of ultrafast and steady-state spectroscopy, ab initio calculations, and multidimensional NMR. A simple photoinduced back electron transfer mechanism from reduced F4TCNQ to oxidized P3HT does not explain the observed photophysics. Instead, photoexcited F4TCNQ* reacts with THF solvent molecules to form a neutral, nondoping, and highly soluble F4TCNQ-THF complex. Hence, ionized F4TCNQ is removed from the P3HT indirectly by depletion of the neutral F4TCNQ. Because the reaction involves only the dopant and similar photoreactivity would expected for most other dopant molecules, we expect optical DISC patterning should be generalizable to a wide range of polymer:dopant systems.

18.
Sci Rep ; 6: 30915, 2016 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-27498880

RESUMO

High efficiency polymer:fullerene photovoltaic device layers self-assemble with hierarchical features from ångströms to 100's of nanometers. The feature size, shape, composition, orientation, and order all contribute to device efficiency and are simultaneously difficult to study due to poor contrast between carbon based materials. This study seeks to increase device efficiency and simplify morphology measurements by replacing the typical fullerene acceptor with endohedral fullerene Lu3N@PC80BEH. The metal atoms give excellent scattering contrast for electron beam and x-ray experiments. Additionally, Lu3N@PC80BEH has a lower electron affinity than standard fullerenes, which can raise the open circuit voltage of photovoltaic devices. Electron microscopy techniques are used to produce a detailed account of morphology evolution in mixtures of Lu3N@PC80BEH with the record breaking donor polymer, PTB7 and coated using solvent mixtures. We demonstrate that common solvent additives like 1,8-diiodooctane or chloronapthalene do not improve the morphology of endohedral fullerene devices as expected. The poor device performance is attributed to the lack of mutual miscibility between this particular polymer:fullerene combination and to co-crystallization of Lu3N@PC80BEH with 1,8-diiodooctane. This negative result explains why solvent additives mixtures are not necessarily a morphology cure-all.

19.
ACS Appl Mater Interfaces ; 7(51): 28420-8, 2015 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-26673846

RESUMO

The diffusion of molecules through and between organic layers is a serious stability concern in organic electronic devices. In this work, the temperature-dependent diffusion of molecular dopants through small molecule hole transport layers is observed. Specifically we investigate bilayer stacks of small molecules used for hole transport (MeO-TPD) and p-type dopants (F4TCNQ and C60F36) used in hole injection layers for organic light emitting diodes and hole collection electrodes for organic photovoltaics. With the use of absorbance spectroscopy, photoluminescence spectroscopy, neutron reflectometry, and near-edge X-ray absorption fine structure spectroscopy, we are able to obtain a comprehensive picture of the diffusion of fluorinated small molecules through MeO-TPD layers. F4TCNQ spontaneously diffuses into the MeO-TPD material even at room temperature, while C60F36, a much bulkier molecule, is shown to have a substantially higher morphological stability. This study highlights that the differences in size/geometry and thermal properties of small molecular dopants can have a significant impact on their diffusion in organic device architectures.

20.
ACS Nano ; 9(2): 1905-12, 2015 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-25625435

RESUMO

Organic electronics promise to provide flexible, large-area circuitry such as photovoltaics, displays, and light emitting diodes that can be fabricated inexpensively from solutions. A major obstacle to this vision is that most conjugated organic materials are miscible, making solution-based fabrication of multilayer or micro- to nanoscale patterned films problematic. Here we demonstrate that the solubility of prototypical conductive polymer poly(3-hexylthiophene) (P3HT) can be reversibly "switched off" using high electron affinity molecular dopants, then later recovered with light or a suitable dedoping solution. Using this technique, we are able to stack mutually soluble materials and laterally pattern polymer films by evaporation or with light, achieving sub-micrometer, optically limited feature sizes. After forming these structures, the films can be dedoped without disrupting the patterned features; dedoped films have identical optical characteristics, charge carrier mobilities, and NMR spectra as as-cast P3HT films. This method greatly simplifies solution-based device fabrication, is easily adaptable to current manufacturing workflows, and is potentially generalizable to other classes of materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA