Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Ecotoxicology ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990495

RESUMO

Among aquatic organisms, filter feeders are particularly exposed to the ingestion of microplastics (MPs) and nanoplastics (NPs). The present study investigates the effect of environmental microplastics (ENV MPs) and nanoplastics (ENV NPs) generated from macro-sized plastic debris collected in the Garonne River (France), and polystyrene NPs (PS NPs) on the freshwater bivalve Corbicula fluminea. Organisms were exposed to plastic particles at three concentrations: 0.008, 10, and 100 µg L-1 for 21 days. Gene expression measurements were conducted in gills and visceral mass at 7 and 21 days to assess the effects of plastic particles on different functions. Our results revealed: (i) an up-regulation of genes, mainly involved in endocytosis, oxidative stress, immunity, apoptosis, and neurotoxicity, at 7 days of exposure for almost all environmental plastic particles and at 21 days of exposure for PS NPs in the gills, (ii) PS NPs at the three concentrations tested and ENV MPs at 0.008 µg L-1 induced strong down-regulation of genes involved in detoxication, oxidative stress, immunity, apoptosis, and neurotoxicity at 7 days of exposure in the visceral mass whereas ENV MPs at 10 and 100 µg L-1 and all ENV NPs induced less pronounced effects, (iii) overall, PS NPs and ENV MPs 0.008 µg L-1 did not trigger the same effects as ENV MPs 10 and 100 µg L-1 and all ENV NPs, either in the gills or the visceral mass at 7 and 21 days of exposure. This study highlighted the need to use MPs and NPs sampled in the environment for future studies as their properties induce different effects at the molecular level to living organisms.

2.
Mar Environ Res ; 196: 106410, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38422819

RESUMO

An important number of studies have evaluated the presence of microplastics, particles with a size below 5 mm, in aquatic organisms. Studies have shown that these fragments are widely present in the marine environment, but research on the estuarine ecosystem is still scarce. In this study, two different approaches were used to evaluate the presence and ingestion of plastic particles in the ragworm Hediste diversicolor: a field study for the environmental assessment and a laboratory experiment in controlled condition. For the environmental evaluation, ingestion of microplastics was evaluated in the ragworm H. diversicolor sampled from the mudflats of the Seine estuary (France) during March and June 2017 and 2018, on two locations: S1 and S2, both characterized by high anthropogenic pressures, and for S2 a more influential hydrodynamic component. Ingestion of microplastics was measured in ragworms tissues and in gut content (sediment) after depuration. The number of particles as well as their size, shape and color were reported and compared between sampling period and locations. Results showed the presence of a low number of particles in both worms and gut content. In gut content, 45.6% and 87.58% of samples from site S1 and S2 respectively contained plastic like particles. In worms, 41.7% (S1) and 75.8% (S2) of analysed samples contained plastic like items. The lowest mean number of particles was 0.21 ± 0.31 (S1 in June 2017) in worms' tissues, but 0.80 ± 0.90 (S1 in June 2017) in the gut content and the highest was 1.47 ± 1.41 (S2 in April 2017) while the highest number was 2.55 ± 2.06 (S2 in June 2017) in worms and gut content respectively. The majority of suspected microplastics observed were fibers (66%) and fragments (27%), but films (3.7%) foam (2.1%), and granules (0.2%) were also identified. In addition, the most polymer type observed by Raman spectroscopy was polypropylene. Furthermore, a preliminary study of the ingestion and egestion of fluorescent polyethylene (PE) microbeads in the digestive tract of ragworms was conducted after exposure through water, during 1h at 1.2 × 106 MP/mL. Results showed a rapid turnover of PE microbeads throughout the digestive tract of worms especially after exposure through water. This study revealed that microplastics are ingested by the ragworm H. diversicolor but do not seem to bioaccumulate. More research is needed to measure potential chronic effects of microplastics on physiological parameters of H. diversicolor and potential trophic transfer of microplastics.


Assuntos
Poliquetos , Poluentes Químicos da Água , Animais , Ecossistema , Microplásticos , Plásticos , Poliquetos/fisiologia , Polietileno , Água , Poluentes Químicos da Água/análise
3.
Mar Environ Res ; 191: 106159, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37683560

RESUMO

The aim of this study was to explore the adverse effects of a microplastic (MP) mixture obtained from litter accumulated in the Seine River (France) compared to those of their major co-plasticizer, dibutylphthalate (DBP), on the sentinel species Hediste diversicolor. A suite of biomarkers has been investigated to study the impacts of MPs (100 mg kg-1 sediment), DBP (38 µg kg-1 sediment) on worms compared to non-exposed individuals after 4 and 21 days. The antioxidant response, immunity, neurotoxicity and energy and respiratory metabolism were investigated using biomarkers. After 21 days, worms exposed to MPs showed an increasing aerobic metabolism, an enhancement of both antioxidant and neuroimmune responses. Energy-related biomarkers demonstrated that the energy reallocated to the defence system may come from proteins. A similar impact was depicted after DBP exposure, except for neurotoxicity. Our results provide a better understanding of the ecotoxicological effects of environmental MPs and their associated-contaminants on H. diversicolor.


Assuntos
Poliquetos , Poluentes Químicos da Água , Humanos , Animais , Microplásticos , Espécies Sentinelas/metabolismo , Antioxidantes , Plastificantes/toxicidade , Plastificantes/metabolismo , Plásticos/toxicidade , Rios , Dibutilftalato/toxicidade , Dibutilftalato/metabolismo , Biomarcadores/metabolismo , Poliquetos/fisiologia , Poluentes Químicos da Água/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-37572933

RESUMO

Small plastic particles, microplastics (MPs) and nanoplastics (NPs) represent a major threat in aquatic environments. Freshwater organisms are exposed to MPs and NPs, particularly in industrial and urban areas. The present study aimed to compare the toxicity between polystyrene NPs (PS NPs) and environmental microplastics (ENV MPs) and nanoplastics (ENV NPs) generated from macro-sized debris collected in the Garonne River on the freshwater bivalve C. fluminea. The organisms were exposed to the different plastic particles at three environmentally relevant concentrations: 0.008, 10, and 100 µg L-1 for 21 days. The biological responses of organisms were assessed using a multi-biomarker approach from the sub-individual to the individual level. The results demonstrated that: i) ENV NPs triggered more effects on detoxification processes and immune response, confirming that using manufactured NPs for laboratory exposure can lead to misleading conclusions on the risks posed by plastic particles; ii) effects of ENV MPs were less marked than ENV NPs, emphasizing the importance of testing a size continuum of plastic particles from NPs to MPs; iii) some effects were only observed for the low and/or intermediate concentrations tested, underlining the importance of using environmentally relevant concentrations. In light of these results, laboratory studies should be continued by exposing aquatic species to environmental MPs and NPs. The properties of these particles have to be characterized for a better risk assessment of environmental plastic particles.


Assuntos
Corbicula , Poluentes Químicos da Água , Animais , Poliestirenos/toxicidade , Microplásticos/toxicidade , Plásticos/toxicidade , Poluentes Químicos da Água/análise
5.
Environ Sci Pollut Res Int ; 30(16): 45725-45739, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36708472

RESUMO

Plastic has been largely detected in estuarine environments and represents major concern towards aquatic living organisms. The present study evaluates the impact of microplastics (MPs) and nanoplastics (NPs) under realistic exposure conditions. Scrobicularia plana individuals were exposed to low concentrations (0.008, 10, and 100 µg L-1) of environmental MPs and NPs as well as to standard PS NPs, as a comparison condition. The aim of this study was to understand the ecotoxicological effects of environmental plastic particles on S. plana gills and digestive glands but also to compare the effects of plastic polymers size in order to highlight if the size could induce different toxicity profiles within this model organism, at different levels of biological organization. Results showed a differential induction of detoxification enzymes (CAT, GST), immunity (AcP), DNA damage processes as well as a differential effect on behavior and condition index of animals depending upon the type of plastic, the size, the concentration tested, and the type of organ. This study underlines the necessity of testing (i) plastics collected from the environment as compared to standard ones and (ii) the effect of size using plastics coming from the same batch of macrosized plastics. This study concludes on the future need directions that plastic-based studies must take in order to be able to generate a large quantity of relevant data that could be used for future regulatory needs on the use of plastic.


Assuntos
Bivalves , Poluentes Químicos da Água , Animais , Microplásticos/toxicidade , Plásticos/toxicidade , Poluentes Químicos da Água/análise , Organismos Aquáticos
6.
Mar Pollut Bull ; 142: 178-182, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31232292

RESUMO

The main objective of the present study was to explore the potential link between acetylcholinesterase (AChE) activity and burrowing behaviour of the ragworm Hediste diversicolor, which may have consequences at higher levels of biological organisation. Two complementary studies were conducted. AChE activity, at the sub-individual level, and behavioural responses, at the individual level, were evaluated in worms from the Loire estuary (France), whereas density and biomass of H. diversicolor were determined at the population level. A Spearman positive correlation between both biomarkers (AChE and burrowing) suggested that inhibition of AChE activity was linked to behaviour impairments. At the population level, lower AChE and behaviour activities were detected in worms corresponding to lower population density and biomass. These results provide direct empirical field evidence demonstrating the sensitivity of behaviour of H. diversicolor as a biomonitor of estuarine health status assessment.


Assuntos
Acetilcolinesterase/metabolismo , Poliquetos/fisiologia , Animais , Comportamento Animal/fisiologia , Biomarcadores/metabolismo , Ecotoxicologia/métodos , Estuários , França , Densidade Demográfica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA