Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 272(8): 5016-23, 1997 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-9030564

RESUMO

Carboxyl-terminal amidation, a required post-translational modification for the bioactivation of many neuropeptides, entails sequential enzymatic action by peptidylglycine monooxygenase (PAM, EC 1.14.17.3) and peptidylamidoglycolate lyase (PGL, EC 4.3.2.5). The monooxygenase, PAM, first catalyzes conversion of a glycine-extended pro-peptide to the corresponding alpha-hydroxyglycine derivative, and the lyase, PGL, then catalyzes breakdown of this alpha-hydroxyglycine derivative to the amidated peptide plus glyoxylate. We now introduce the first potent inhibitors for peptidylamidoglycolate lyase. These inhibitors, which can be viewed as pyruvate-extended N-acetyl amino acids, constitute a novel class of compounds. They were designed to resemble likely transient species along the reaction pathway of PGL catalysis. A general synthetic procedure for preparation of pyruvate-extended N-acetyl amino acids or peptides is described. Since these compounds possess the 2,4-dioxo-carboxylate moiety, their solution tautomerization was investigated using both NMR and high performance liquid chromatography analyses. The results establish that freshly prepared solutions of N-Ac-Phe-pyruvate consist predominantly of the enol tautomer, which then slowly tautomerizes to the diketo form when left standing for several days in an aqueous medium; upon acidification, formation of the hydrate tautomer occurs. Kinetic experiments established that these novel compounds are highly potent, pure competitive inhibitors of PGL. Kinetic experiments with the ascorbate-dependent copper monooxygenases, PAM and dopamine-beta-monooxygenase, established that these compounds also bind competitively with respect to ascorbate; however, pyruvate-extended N-acyl-amino acid derivatives possessing hydrophobic side chains are much more potent inhibitors of PGL than of PAM. Selective targeting of N-Ac-Phe-pyruvate so as to inhibit the lyase, but not the monooxygenase, domain was demonstrated with the bifunctional amidating enzyme of Xenopus laevis. The availability of potent inhibitors of PGL should facilitate studies regarding the possible biological role of alpha-hydroxyglycine-extended peptides.


Assuntos
Amidas/metabolismo , Amidina-Liases , Liases/metabolismo , Oxigenases de Função Mista/metabolismo , Complexos Multienzimáticos , Peptídeos/metabolismo , Ácido Pirúvico/metabolismo , Animais , Bovinos , Xenopus laevis
2.
J Biol Chem ; 270(49): 29250-5, 1995 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-7493955

RESUMO

Carboxyl-terminal amidation, a required post-translational modification for the bioactivation of many neuropeptides, entails sequential enzymatic action by peptidylglycine alpha-monooxygenase (PAM, EC 1.14.17.3) and peptidylamidoglycolate lyase (PGL, EC 4.3.2.5). The monooxygenase, PAM, first catalyzes conversion of a glycine-extended pro-peptide to the corresponding alpha-hydroxyglycine derivative, and the lyase, PGL, then catalyzes breakdown of this alpha-hydroxyglycine derivative to the amidated peptide plus glyoxylate. We have previously established that PAM and PGL exhibit tandem reaction stereospecificities, with PAM producing, and PGL being reactive toward, only alpha-hydroxyglycine derivatives of absolute configuration (S). We now demonstrate that PAM and PGL exhibit dramatically different subsite stereospecificities toward the residue at the penultimate position (the P2 residue) in both substrates and inhibitors. Incubation of Ac-L-Phe-Gly, Ac-L-Phe-L-Phe-Gly, or (S)-O-Ac-mandelyl-Gly with PAM results in complete conversion of these substrates to the corresponding alpha-hydroxylated products, whereas the corresponding X-D-Phe-Gly compounds undergo conversions of < 1%. The KI of Ac-D-Phe-Gly is at least 700-fold higher than that of Ac-L-Phe-Gly, and the same pattern holds for other substrate stereoisomers. This S2 subsite stereospecificity of PAM also holds for competitive inhibitors; thus, the KI of 45 microM for Ac-L-Phe-OCH2CO2H increases to 2,247 microM for the -D-Phe- enantiomer. In contrast, incubation of PGL with Ac-L-Phe-alpha-hydroxy-Gly, Ac-D-Phe-alpha-hydroxy-Gly, (S)-O-Ac-mandelyl-alpha-hydroxy-Gly, or (R)-O-Ac-mandelyl-alpha-hydroxy-Gly results in facile enzymatic conversion of each of these compounds to their corresponding amide products. The simultaneous expression of high reaction stereospecificity and low S2 subsite stereospecificity in the course of PGL catalysis was illustrated by a series of experiments in which enzymatic conversion of the diastereomers of Ac-L-Phe-alpha-hydroxy-Gly and Ac-D-Phe-alpha-hydroxy-Gly was monitored directly by HPLC. Kinetic parameters were determined for both substrates and potent competitive inhibitors of PGL, and the results confirm that, in sharp contrast to PAM, the configuration of the chiral moiety at the P2 position has virtually no effect on binding or catalysis. These results illustrate a case where catalytic domains, which must function sequentially (and with tandem reaction stereochemistry) in a given metabolic process, nevertheless exhibit sharply contrasting subsite stereospecificities toward the binding of substrates and inhibitors.


Assuntos
Amidina-Liases , Liases/metabolismo , Oxigenases de Função Mista/metabolismo , Complexos Multienzimáticos , Peptídeos/metabolismo , Sequência de Aminoácidos , Liases/química , Oxigenases de Função Mista/química , Dados de Sequência Molecular , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA