Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
mBio ; 9(3)2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29871914

RESUMO

This study describes the functional characterization of two proteins, AupA and AupB, which are required for growth on alkanes in the marine hydrocarbonoclastic bacterium Marinobacter hydrocarbonoclasticus The aupA and aupB genes form an operon whose expression was increased upon adhesion to and biofilm formation on n-hexadecane. AupA and AupB are outer and inner membrane proteins, respectively, which are able to interact physically. Mutations in aupA or/and aupB reduced growth on solid paraffin and liquid n-hexadecane, while growth on nonalkane substrates was not affected. In contrast, growth of aup mutants on n-hexadecane solubilized in Brij 58 micelles was completely abolished. Mutant cells had also lost the ability to bind to n-hexadecane solubilized in Brij 58 micelles. These results support the involvement of AupA and AupB in the uptake of micelle-solubilized alkanes and provide the first evidence for a cellular process involved in the micellar uptake pathway. The phylogenetic distribution of the aupAB operon revealed that it is widespread in marine hydrocarbonoclastic bacteria of the orders Oceanospirillales and Alteromonadales and that it is present in high copy number (up to six) in some Alcanivorax strains. These features suggest that Aup proteins probably confer a selective advantage in alkane-contaminated seawater.IMPORTANCE Bacteria are the main actors of the biological removal of hydrocarbons in seawater, and so, it is important to understand how they degrade hydrocarbons and thereby mitigate marine environmental damage. Despite a considerable amount of literature about the dynamic of microbial communities subjected to hydrocarbon exposure and the isolation of strains that degrade hydrocarbons, most of the genetic determinants and molecular mechanisms of bacterial hydrocarbon uptake remain unknown. This study identifies two genes, aupA and aupB, in the hydrocarbonoclastic bacterium Marinobacter hydrocarbonoclasticus that are present frequently in multiple copies in most of the marine hydrocarbon-degrading bacteria for which the genomic sequence is available. AupA and AupB are two novel membrane proteins interacting together that are involved in the uptake of alkanes dissolved in surfactant micelles. The function and the phylogenetic distribution of aupA and aupB suggest that they might be one attribute of the remarkable adaptation of marine hydrocarbonoclastic bacteria that allow them to take advantage of hydrocarbons.


Assuntos
Alcanos/metabolismo , Proteínas de Bactérias/metabolismo , Marinobacter/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Bactérias/genética , Transporte Biológico , Regulação Bacteriana da Expressão Gênica , Marinobacter/classificação , Marinobacter/genética , Proteínas de Membrana/genética , Óperon , Filogenia
2.
Microbiology (Reading) ; 163(5): 669-677, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28535844

RESUMO

Alkanes are widespread pollutants found in soil, freshwater and marine environments. Marinobacter hydrocarbonoclasticus (Mh) strain SP17 is a marine bacterium able to use many hydrophobic organic compounds, including alkanes, through the production of biofilms that allow their poor solubility to be overcome. This study pointed out that temperature is an environmental factor that strongly affects the biofilm formation and morphology of Mh on the model alkanes, hexadecane and paraffin. We showed that Mh biofilm formation and accumulation of intracytoplasmic inclusions are higher on solid alkanes (hexadecane at 10 °C and paraffin at 10 °C and 30 °C) than on liquid alkane (hexadecane at 30 °C) or soluble substrate (lactate at both temperatures). We also found that Mh produces more extracellular polymeric substances at 30 °C than at 10 °C on alkanes and none on lactate. We observed that bacterial length is significantly higher at 10 °C than at 30 °C on lactate and hexadecane. On paraffin, at 30 °C, the cell morphology is markedly altered by large rounded or irregularly shaped cytoplasmic inclusions. Altogether, the results showed that Mh is able to adapt and use alkanes as a carbon source, even at low temperature.

3.
FEMS Microbiol Ecol ; 90(3): 816-31, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25318592

RESUMO

Hydrophobic organic compounds (mainly lipids and hydrocarbons) represent a significant part of the organic matter in marine waters, and their degradation has an important impact in the carbon fluxes within oceans. However, because they are nearly insoluble in the water phase, their degradation by microorganisms occurs at the interface with water and thus requires specific adaptations such as biofilm formation. We show that Marinobacter hydrocarbonoclasticus SP17 develops biofilms, referred to as oleolytic biofilms, on a large variety of hydrophobic substrates, including hydrocarbons, fatty alcohols, fatty acids, triglycerides, and wax esters. Microarray analysis revealed that biofilm growth on n-hexadecane or triolein involved distinct genetic responses, together with a core of common genes that might concern general mechanisms of biofilm formation. Biofilm growth on triolein modulated the expression of hundreds of genes in comparison with n-hexadecane. The processes related to primary metabolism and genetic information processing were downregulated. Most of the genes that were overexpressed on triolein had unknown functions. Surprisingly, their genome localization was restricted to a few regions identified as putative genomic islands or mobile elements. These results are discussed with regard to the adaptive responses triggered by M. hydrocarbonoclasticus SP17 to occupy a specific niche in marine ecosystems.


Assuntos
Alcanos/metabolismo , Biofilmes/crescimento & desenvolvimento , Metabolismo Energético/genética , Ácidos Graxos/metabolismo , Marinobacter/fisiologia , Organismos Aquáticos/genética , Organismos Aquáticos/metabolismo , Sequência de Bases , Quimiotaxia , Álcoois Graxos/metabolismo , Genoma Bacteriano/genética , Interações Hidrofóbicas e Hidrofílicas , Marinobacter/genética , Análise de Sequência de DNA , Transcriptoma , Trioleína/metabolismo , Água , Ceras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA