Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Sci Rep ; 11(1): 13273, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34168208

RESUMO

Clostridioides difficile BI/NAP1/ribotype 027 is an epidemic hypervirulent strain found worldwide, including in Latin America. We examined the genomes and exoproteomes of two multilocus sequence type (MLST) clade 2 C. difficile strains considered hypervirulent: ICC-45 (ribotype SLO231/UK[CE]821), isolated in Brazil, and NAP1/027/ST01 (LIBA5756), isolated during a 2010 outbreak in Costa Rica. C. difficile isolates were cultured and extracellular proteins were analyzed using high-performance liquid chromatography-tandem mass spectrometry. Genomic analysis revealed that these isolates shared most of the gene composition. Only 83 and 290 NAP1/027 genes were considered singletons in ICC-45 and NAP1/027, respectively. Exoproteome analysis revealed 197 proteins, of which 192 were similar in both strains. Only five proteins were exclusive to the ICC-45 strain. These proteins were involved with catalytic and binding functions and indirectly interacted with proteins related to pathogenicity. Most proteins, including TcdA, TcdB, flagellin subunit, and cell surface protein, were overrepresented in the ICC-45 strain; 14 proteins, including mature S-layer protein, were present in higher proportions in LIBA5756. Data are available via ProteomeXchange with identifier PXD026218. These data show close similarity between the genome and proteins in the supernatant of two strains with hypervirulent features isolated in Latin America and underscore the importance of epidemiological surveillance of the transmission and emergence of new strains.


Assuntos
Clostridioides difficile/genética , Tipagem de Sequências Multilocus , Clostridioides difficile/patogenicidade , Infecções por Clostridium/epidemiologia , Infecções por Clostridium/microbiologia , Surtos de Doenças , Humanos , América Latina/epidemiologia , Tipagem de Sequências Multilocus/métodos , Filogenia , Proteômica , Ribotipagem
2.
Anaerobe ; 69: 102351, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33621659

RESUMO

Clostridioides difficile is an important organism causing healthcare-associated infections. It has been documented that specific strains caused multiple outbreaks globally, and patients infected with those strains are more likely to develop severe C. difficile infection (CDI). With the appearance of a variant strain, BI/NAP1 ribotype 027, responsible for several outbreaks and high mortality rates worldwide, the epidemiology of the CDI changed drastically in the United States, Europe, and some Latin American countries. Although the epidemic strain 027 was not yet detected in Brazil, there are ribotypes exclusively found in the country, such as, 131, 132, 133, 135, 142 and 143, which are responsible for outbreaks in Brazilian hospitals and nursing homes. Although PCR-ribotyping is the most used method in epidemiology studies of C. difficile, it is not available in Brazil. This study aimed to develop and validate an in-house database for detecting C. difficile ribotypes, usually involved in CDI in Brazilian hospitals, by using MALDI-TOF MS. A database with 19 different ribotypes, 13 with worldwide circulation and 6 Brazilian-restricted, was created based on 27 spectra readings of each ribotype. After BioNumerics analysis, neighbor-joining trees revealed that spectra were distributed in clusters according to ribotypes, showing that MALDI-TOF MS could discriminate all 19 ribotypes. Moreover, each ribotype showed a different profile with 42 biomarkers detected in total. Based on their intensity and occurrence, 13 biomarkers were chosen to compose ribotype-specific profiles, and in silico analysis showed that most of these biomarkers were uncharacterized proteins or well-conserved peptides, such as ribosomal proteins. A double-blind assessment using the 13 biomarkers correctly assigned the ribotype in 73% of the spectra analyzed, with 94%-100% of correct hits for 027 and for Brazilian ribotypes. Although further analyses are required, our results show that MALDI-TOF MS might be a reliable, fast and feasible alternative for epidemiological surveillance of C. difficile in Brazil.


Assuntos
Técnicas de Tipagem Bacteriana/métodos , Clostridioides difficile/genética , Clostridioides difficile/isolamento & purificação , Infecções por Clostridium/diagnóstico , Fezes/microbiologia , Ribotipagem/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Brasil , Variação Genética , Genótipo , Humanos
3.
J Proteomics ; 228: 103939, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32798775

RESUMO

Mesocestoides corti (syn. vogae) is a useful model for developmental studies of platyhelminth parasites of the Cestoda class, such as Taenia spp. or Echinococcus spp. It has been used in studies to characterize cestode strobilation, i.e. the development of larvae into adult worms. So far, little is known about the initial molecular events involved in cestode strobilation and, therefore, we carried out a study to characterize newly synthesized (NS) proteins upon strobilation induction. An approach based on bioorthogonal noncanonical amino acid tagging and mass spectrometry was used to label, isolate, identify, and quantify NS proteins in the initial steps of M. corti strobilation. Overall, 121 NS proteins were detected exclusively after induction of strobilation, including proteins related to development pathways, such as insulin and notch signaling. Metabolic changes that take place in the transition from the larval stage to adult worm were noted in special NS protein subsets related to developmental processes, such as focal adhesion, cell leading edge, and maintenance of location. The data shed light on mechanisms underlying early steps of cestode strobilation and enabled identification of possible developmental markers. We also consider the use of developmental responsive proteins as potential drug targets for developing novel anthelmintics. BIOLOGICAL SIGNIFICANCE: Larval cestodiases are life-threatening parasitic diseases that affect both man and domestic animals worldwide. Cestode parasites present complex life cycles, in which they undergo major morphological and physiological changes in the transition from one life-stage to the next. One of these transitions occurs during cestode strobilation, when the mostly undifferentiated and non-segmented larval or pre-adult form develops into a fully segmented and sexually differentiated (strobilated) adult worm. Although the proteomes of bona fide larvae and strobialted adults have been previously characterized for a few cestode species, little is still known about the dynamic of protein synthesis during the early steps of cestode strobilation. Now, the assessment of newly synthesized (NS) proteins within the first 48 h of strobilation the model cestode M. corti allowed to shed light on molecular mechanisms that are triggered by strobilation induction. The functional analyses of this repertoire of over a hundred NS proteins pointed out to changes in metabolism and activation of classical developmental signaling pathways in early strobilation. Many of the identified NS proteins may become valuable cestode developmental markers and their involvement in vital processes make them also good candidate targets for novel anthelmintic drugs.


Assuntos
Cestoides , Mesocestoides , Parasitos , Animais , Estágios do Ciclo de Vida , Proteoma
4.
Sci Rep ; 9(1): 15876, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31685918

RESUMO

Cystic hydatid disease (CHD) is a worldwide neglected zoonotic disease caused by Echinococcus granulosus. The parasite is well adapted to its host by producing protective molecules that modulate host immune response. An unexplored issue associated with the parasite's persistence in its host is how the organism can survive the oxidative stress resulting from parasite endogenous metabolism and host defenses. Here, we used hydrogen peroxide (H2O2) to induce oxidative stress in E. granulosus protoescoleces (PSCs) to identify molecular pathways and antioxidant responses during H2O2 exposure. Using proteomics, we identified 550 unique proteins; including 474 in H2O2-exposed PSCs (H-PSCs) samples and 515 in non-exposed PSCs (C-PSCs) samples. Larger amounts of antioxidant proteins, including GSTs and novel carbonyl detoxifying enzymes, such as aldo-keto reductase and carbonyl reductase, were detected after H2O2 exposure. Increased concentrations of caspase-3 and cathepsin-D proteases and components of the 26S proteasome were also detected in H-PSCs. Reduction of lamin-B and other caspase-substrate, such as filamin, in H-PSCs suggested that molecular events related to early apoptosis were also induced. We present data that describe proteins expressed in response to oxidative stress in a metazoan parasite, including novel antioxidant enzymes and targets with potential application to treatment and prevention of CHD.


Assuntos
Echinococcus granulosus/metabolismo , Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Caspase 3/metabolismo , Catepsina D/metabolismo , Regulação para Baixo/efeitos dos fármacos , Echinococcus granulosus/crescimento & desenvolvimento , Glutationa Transferase/metabolismo , Proteínas de Helminto/metabolismo , Larva/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteômica/métodos , Regulação para Cima/efeitos dos fármacos
5.
Microb Pathog ; 137: 103717, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31494300

RESUMO

Mycoplasma hyopneumoniae is the etiological agent of enzootic pneumonia (EP), a widespread disease that causes major economic losses to the pig industry. The swine host response plays an important role in the outcome of M. hyopneumoniae infections. The whole proteome of newborn pig trachea (NPTr) epithelial cells infected with the M. hyopneumoniae pathogenic strain 7448 was analyzed using an LC-MS/MS approach to shed light on intracellular processes triggered in response to the pathogen. Overall, 853 swine protein species were identified, 156 of which were differentially represented in response to M. hyopneumoniae 7448 infection in comparison with non-infected control cells. These differentially represented proteins were categorized by function. Fifty-seven of them were assigned to the immune system and/or response to stimulus functional subcategories. Comparative expression analysis of these immune-related proteins in NPTr cells infected with attenuated or non-pathogenic mycoplasmas (M. hyopneumoniae J strain and M. flocculare, respectively) revealed proteins whose abundance was altered only in response to the pathogenic M. hyopneumoniae 7448 strain. Among these proteins, calcium homeostasis and endoplasmic reticulum stress-related biomarkers were detected, providing evidence of molecular mechanisms that might lead to swine cell apoptosis.


Assuntos
Citoplasma/metabolismo , Mycoplasma hyopneumoniae/patogenicidade , Proteoma , Doenças dos Suínos/metabolismo , Traqueia/metabolismo , Animais , Apoptose , Linhagem Celular , Cromatografia Líquida , Citoplasma/imunologia , Citoplasma/microbiologia , Ontologia Genética , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Interações Hospedeiro-Patógeno/fisiologia , Proteoma/genética , Proteoma/isolamento & purificação , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/microbiologia , Espectrometria de Massas em Tandem , Traqueia/imunologia , Traqueia/microbiologia
6.
Exp Parasitol ; 204: 107727, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31344389

RESUMO

BACKGROUND: Trypanosoma rangeli is a protozoan parasite that is non-virulent to the mammalian host and is morphologically and genomically related to Trypanosoma cruzi, whose proliferation within the mammalian host is controversially discussed. OBJECTIVES: We aimed to investigate the T. rangeli cell cycle in vitro and in vivo by characterizing the timespan of the parasite life cycle and by proposing a molecular marker to assess cytokinesis. METHODOLOGY: The morphological events and their timing during the cell cycle of T. rangeli epimastigotes were assessed using DNA staining, flagellum labelling and bromodeoxyuridine incorporation. Messenger RNA levels of four genes previously associated with the cell cycle of trypanosomatids (AUK1, PLK, MOB1 and TRACK) were evaluated in the different T. rangeli forms. FINDINGS: T. rangeli epimastigotes completed the cell cycle in vitro in 20.8 h. PLK emerged as a potential molecular marker for cell division, as its mRNA levels were significantly increased in exponentially growing epimastigotes compared with growth-arrested parasites or in vitro-differentiated trypomastigotes. PLK expression in T. rangeli can be detected near the flagellum protrusion site, reinforcing its role in the cell cycle. Interestingly, T. rangeli bloodstream trypomastigotes exhibited very low mRNA levels of PLK and were almost entirely composed of parasites in G1 phase. MAIN CONCLUSIONS: Our work is the first to describe the T. rangeli cell cycle in vitro and proposes that PLK mRNA levels could be a useful tool to investigate the T. rangeli ability to proliferate within the mammalian host bloodstream.


Assuntos
Proteínas de Ciclo Celular/genética , Ciclo Celular/genética , Citocinese/fisiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , RNA Mensageiro/análise , Trypanosoma rangeli/citologia , Animais , Bromodesoxiuridina/metabolismo , Ciclo Celular/efeitos dos fármacos , Citocinese/genética , DNA de Protozoário/química , DNA de Protozoário/isolamento & purificação , Citometria de Fluxo , Imunofluorescência , Hidroxiureia/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Inibidores da Síntese de Ácido Nucleico/farmacologia , RNA de Protozoário/genética , RNA de Protozoário/isolamento & purificação , Fatores de Tempo , Trypanosoma rangeli/efeitos dos fármacos , Trypanosoma rangeli/enzimologia , Trypanosoma rangeli/genética , Tripanossomíase/parasitologia , Quinase 1 Polo-Like
7.
Nat Commun ; 10(1): 2720, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31221973

RESUMO

Public Health Laboratories (PHLs) in Puerto Rico did not escape the devastation caused by Hurricane Maria. We implemented a quality management system (QMS) approach to systematically reestablish laboratory testing, after evaluating structural and functional damage. PHLs were inoperable immediately after the storm. Our QMS-based approach began in October 2017, ended in May 2018, and resulted in the reestablishment of 92% of baseline laboratory testing capacity. Here, we share lessons learned from the historic recovery of the largest United States' jurisdiction to lose its PHL capacity, and provide broadly applicable tools for other jurisdictions to enhance preparedness for public health emergencies.

8.
Int J Syst Evol Microbiol ; 69(8): 2268-2276, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31125302

RESUMO

Two unusual catalase-negative, Gram-stain-positive, Vagococcus-like isolates that were referred to the CDC Streptococcus Laboratory for identification are described. Strain SS1994T was isolated from ground beef and strain SS1995T was isolated from a human foot wound. Comparative 16S rRNA gene sequence analysis of isolates SS1994T and SS1995T against Vagococcus type strain sequences supported their inclusion in the genus Vagococcus. Strain SS1994T showed high sequence similarity (>97.0 %) to the two most recently proposed species, Vagococcus martis (99.2 %) and Vagococcus teuberi (99.0 %) followed by Vagococcus penaei (98.8 %), strain SS1995T (98.6 %), Vagococcus carniphilus (98.0 %), Vagococcus acidifermentans (98.0 %) and Vagococcus fluvialis (97.9 %). The 16S rRNA gene sequence of strain SS1995T was most similar to V. penaei (99.1 %), followed by SS1994T (98.6 %), V. martis (98.4 %), V. teuberi (98.1 %), V. acidifermentans (97.8 %), and both V. carniphilus and V. fluvialis (97.5 %). A polyphasic taxonomic study using conventional biochemical and the rapid ID 32 STREP system, MALDI-TOF MS, cell fatty acid analysis, pairwise sequence comparisons of the 16S rRNA, rpoA, rpoB, pheS and groL genes, and comparative core and whole genome sequence analyses revealed that strains SS1994T and SS1995T were two novel Vagococcus species. The novel taxonomic status of the two isolates was confirmed with core genome phylogeny, average nucleotide identity <84 % and in silico DNA-DNA hybridization <28 % to any other Vagococcus species. The names Vagococcusbubulae SS1994T=(CCUG 70831T=LMG 30164T) and Vagococcusvulneris SS1995T=(CCUG 70832T=LMG 30165T) are proposed.


Assuntos
Enterococcaceae/classificação , Pé/microbiologia , Filogenia , Carne Vermelha/microbiologia , Ferimentos e Lesões/microbiologia , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , Bovinos , DNA Bacteriano/genética , Enterococcaceae/isolamento & purificação , Ácidos Graxos/química , Genes Bacterianos , Humanos , Masculino , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
9.
J Proteomics ; 199: 67-76, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30862566

RESUMO

Mycoplasma hyopneumoniae is a respiratory pathogen, causing porcine enzootic pneumonia. To survive in the porcine respiratory tract, M. hyopneumoniae must cope with both oxidative and heat stress imposed by the host. To get insights into M. hyopneumoniae stress responses and pathogenicity mechanisms, the protein profiles of two M. hyopneumoniae strains, pathogenic 7448 strain and non-pathogenic strain J, were surveyed under oxidative (OS) or heat (HS) stress. M. hyopneumoniae strains were submitted to OS (0.5% hydrogen peroxide) or HS (temperature shifts to 42 °C) conditions and protein profiling was carried out by LC-MS/MS and label-free quantitative analyses. Data are available via ProteomeXchange with identifier PXD012742. Qualitative and quantitative differences involving 40-60 M. hyopneumoniae proteins were observed for both strains when comparing bacteria exposed to OS or HS to non-treated controls. However, no differences in abundance were found in proteins classically related to stress responses, as peroxidases and chaperones, suggesting that these proteins would be constitutively present in both strains in the tested conditions. Interestingly, under stress conditions, more virulence-related proteins were detected in M. hyopneumoniae 7448 differentially represented proteins than in M. hyopneumoniae J, suggesting that stress may trigger a differential response of the corresponding genes, shared by both strains.


Assuntos
Mycoplasma hyopneumoniae/fisiologia , Proteoma/análise , Estresse Fisiológico , Animais , Proteínas de Bactérias/análise , Proteínas de Bactérias/genética , Cromatografia Líquida , Resposta ao Choque Térmico , Mycoplasma hyopneumoniae/genética , Mycoplasma hyopneumoniae/patogenicidade , Estresse Oxidativo , Proteoma/genética , Especificidade da Espécie , Suínos , Espectrometria de Massas em Tandem
10.
Analyst ; 144(7): 2264-2274, 2019 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-30810119

RESUMO

Anthrax protective antigen (83 kDa, PA83) is an essential component of two major binary toxins produced by Bacillus anthracis, lethal toxin (LTx) and edema toxin (ETx). During infection, LTx and ETx contribute to immune collapse, endothelial dysfunction, hemorrhage and high mortality. Following protease cleavage on cell receptors or in circulation, the 20 kDa (PA20) N-terminus is released, activating the 63 kDa (PA63) form which binds lethal factor (LF) and edema factor (EF), facilitating their entry into their cellular targets. Several ELISA-based PA methods previously developed are primarily qualitative or semi-quantitative. Here, we combined protein immunocapture, tryptic digestion and isotope dilution liquid chromatography-mass spectrometry (LC-MS/MS), to develop a highly selective and sensitive method for detection and accurate quantification of total-PA (PA83 + PA63) and PA83. Two tryptic peptides in the 63 kDa region measure total-PA and three in the 20 kDa region measure PA83 alone. Detection limits range from 1.3-2.9 ng mL-1 PA in 100 µL of plasma. Spiked recovery experiments with combinations of PA83, PA63, LF and EF in plasma showed that PA63 and PA83 were quantified accurately against the PA83 standard and that LF and EF did not interfere with accuracy. Applied to a study of inhalation anthrax in rhesus macaques, total-PA suggested triphasic kinetics, similar to that previously observed for LF and EF. This study is the first to report circulating PA83 in inhalation anthrax, typically at less than 4% of the levels of PA63, providing the first evidence that activated PA63 is the primary form of PA throughout infection.


Assuntos
Antígenos de Bactérias/sangue , Bacillus anthracis/imunologia , Toxinas Bacterianas/sangue , Imunoensaio/métodos , Limite de Detecção , Espectrometria de Massas , Animais , Antígenos de Bactérias/imunologia , Toxinas Bacterianas/imunologia , Macaca mulatta
11.
J Proteomics ; 192: 147-159, 2019 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-30176387

RESUMO

Mycoplasma hyopneumoniae and Mycoplasma flocculare are genetically similar. However, M. hyopneumoniae causes porcine enzootic pneumonia, while M. flocculare is a commensal bacterium. M. hyopneumoniae and M. flocculare do not penetrate their host cells, and secreted proteins are important for bacterium-host interplay. Thus, the secretomes of a swine trachea cell line (NPTr) infected with M. hyopneumoniae 7448 (a pathogenic strain), M. hyopneumoniae J (a non-pathogenic strain) and M. flocculare were compared to shed light in bacterium-host interactions. Medium from the cultures was collected, and secreted proteins were identified by a LC-MS/MS. Overall numbers of identified host and bacterial proteins were, respectively, 488 and 58, for NPTr/M. hyopneumoniae 7448; 371 and 67, for NPTr/M. hyopneumoniae J; and 203 and 81, for NPTr/M. flocculare. The swine cells revealed different secretion profiles in response to the infection with each M. hyopneumoniae strain or with M. flocculare. DAMPs and extracellular proteasome proteins, secreted in response to cell injury and death, were secreted by NPTr cells infected with M. hyopneumoniae 7448. All three mycoplasmas secreted virulence factors during NPTr infection, but M. hyopneumoniae 7448 secreted higher number of adhesins and hypothetical proteins, that may be related with pathogenicity. SIGNIFICANCE: The enzootic pneumonia caused by mycoplasmas of swine respiratory tract has economic loss consequences in pig industry due to antibiotic costs and pig weight loss. However, some genetically similar mycoplasmas are pathogenic while others, such as Mycoplasma hyopneumoniae and Mycoplasma flocculare, are non-pathogenic. Here, we conducted an infection assay between swine cells and pathogenic and non-pathogenic mycoplasmas to decipher secreted proteins during host-pathogen interaction. Mycoplasma response to cell infection was also observed. Our study provided new insights on secretion profile of swine cells in response to the infection with pathogenic and non-pathogenic mycoplasmas. It was possible to observe that pathogenic M. hyopneumoniae 7448 secreted known virulence factors and swine cells responded by inducing cell death. Otherwise, M. hyopneumoniae J and M. flocculare, non-pathogenic mycoplasmas, secreted a different profile of virulence factors in response to swine cells. Consequently, swine cells altered their secretome profile, but the changes were not sufficient to cause disease.


Assuntos
Proteínas de Bactérias/metabolismo , Mycoplasma hyopneumoniae/metabolismo , Mycoplasma/metabolismo , Pneumonia Suína Micoplasmática/metabolismo , Proteoma/metabolismo , Suínos/microbiologia , Traqueia/microbiologia , Animais , Linhagem Celular , Pneumonia Suína Micoplasmática/microbiologia
12.
Virulence ; 9(1): 1230-1246, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30027802

RESUMO

Mycoplasma hyopneumoniae and Mycoplasma flocculare are genetically similar bacteria, which coinhabit the porcine respiratory tract. These mycoplasmas share most of the known virulence factors, but, while M. hyopneumoniae causes porcine enzootic pneumonia (PEP), M. flocculare is a commensal species. To identify potential PEP determinants and provide novel insights on mycoplasma-host interactions, the whole cell proteomes of two M. hyopneumoniae strains, one pathogenic (7448) and other non-pathogenic (J), and M. flocculare were compared. A cell fractioning approach combined with mass spectrometry (LC-MS/MS) proteomics was used to analyze cytoplasmic and surface-enriched protein fractions. Average detection of ~ 50% of the predicted proteomes of M. hyopneumoniae 7448 and J, and M. flocculare was achieved. Many of the identified proteins were differentially represented in M. hyopneumoniae 7448 in comparison to M. hyopneumoniae J and M. flocculare, including potential PEP determinants, such as adhesins, proteases, and redox-balancing proteins, among others. The LC-MS/MS data also provided experimental validation for several genes previously regarded as hypothetical for all analyzed mycoplasmas, including some coding for proteins bearing virulence-related functional domains. The comprehensive proteome profiling of two M. hyopneumoniae strains and M. flocculare provided tens of novel candidates to PEP determinants or virulence factors, beyond those classically described.


Assuntos
Interações entre Hospedeiro e Microrganismos , Mycoplasma hyopneumoniae/metabolismo , Mycoplasma/metabolismo , Pneumonia Suína Micoplasmática/microbiologia , Proteoma/metabolismo , Adesinas Bacterianas/análise , Animais , Proteínas de Bactérias/análise , Espectrometria de Massas , Mycoplasma hyopneumoniae/patogenicidade , Peptídeo Hidrolases/análise , Especificidade da Espécie , Suínos , Fatores de Virulência
13.
J Proteomics ; 175: 127-135, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29317356

RESUMO

Mesocestoides corti is a widely used model for the study of cestode biology, and its transition from the larval tetrathyridium (TT) stage to the strobilated, adult worm (ST) stage can be induced and followed in vitro. Here, a proteomic approach was used to describe and compare M. corti TT and ST protein repertories. Overall, 571 proteins were identified, 238 proteins in TT samples and 333 proteins in ST samples. Among the identified proteins, 207 proteins were shared by TTs and STs, while 157 were stage-specific, being 31 exclusive from TTs, and 126 from STs. Functional annotation revealed fundamental metabolic differences between the TT and the ST stages. TTs perform functions related mainly to basic metabolism, responsible for growth and vegetative development by asexual reproduction. STs, in contrast, perform a wider range of functions, including macromolecule biosynthetic processes, gene expression and control pathways, which may be associated to its proglottization/segmentation, sexual differentiation and more complex physiology. Furthermore, the generated results provided an extensive list of cestode proteins of interest for functional studies in M. corti. Many of these proteins are novel candidate diagnostic antigens, and/or potential targets for the development of new and more effective antihelminthic drugs. BIOLOGICAL SIGNIFICANCE: Cestodiases are parasitic diseases with serious impact on human and animal health. Efforts to develop more effective strategies for diagnosis, treatment or control of cestodiases are impaired by the still limited knowledge on many aspects of cestode biology, including the complex developmental processes that occur in the life cycles of these parasites. Mesocestoides corti is a good experimental model to study the transition from the larval to the adult stage, called strobilation, which occur in typical cestode life-cycles. The performed proteomics approach provided large-scale identification and quantification of M. corti proteins. Many stage-specific or differentially expressed proteins were detected in the larval tetrathyridium (TT) stage and in the strobilated, adult worm (ST) stage. Functional comparative analyses of the described protein repertoires shed light on function and processes associated to specific features of both stages, such as less differentiation and asexual reproduction in TTs, and proglottization/segmentation and sexual differentiation in ST. Moreover, many of the identified stage-specific proteins are useful as cestode developmental markers, and are potential targets for development of novel diagnostic methods and therapeutic drugs for cestodiases.


Assuntos
Larva/metabolismo , Estágios do Ciclo de Vida , Proteômica/métodos , Animais , Cestoides/química , Infecções por Cestoides/diagnóstico , Infecções por Cestoides/tratamento farmacológico , Proteínas de Helminto/análise , Proteínas de Helminto/fisiologia , Humanos , Mesocestoides/química , Reprodução Assexuada , Diferenciação Sexual
14.
J AOAC Int ; 101(3): 761-768, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28899453

RESUMO

Campylobacteriosis is an infectious gastrointestinal disease caused by Campylobacter spp. In most cases, it is either underdiagnosed or underreported due to poor diagnostics and limited databases. Several DNA-based molecular diagnostic techniques, including 16S ribosomal RNA (rRNA) sequence typing, have been widely used in the species identification of Campylobacter. Nevertheless, these assays are time-consuming and require a high quality of bacterial DNA. Matrix-assisted laser desorption ionization (MALDI) time-of-flight (TOF) MS is an emerging diagnostic technology that can provide the rapid identification of microorganisms by using their intact cells without extraction or purification. In this study, we analyzed 24 American Type Culture Collection reference isolates of 16 Campylobacter spp. and five unknown clinical bacterial isolates for rapid identification utilizing two commercially available MADI-TOF MS platforms, namely the bioMérieux VITEK® MS and Bruker Biotyper systems. In addition, 16S rRNA sequencing was performed to confirm the species-level identification of the unknown clinical isolates. Both MALDI-TOF MS systems identified the isolates of C. jejuni, C. coli, C. lari, and C. fetus. The results of this study suggest that the MALDI-TOF MS technique can be used in the identification of Campylobacter spp. of public health importance.


Assuntos
Técnicas de Tipagem Bacteriana/métodos , Campylobacter/isolamento & purificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Campylobacter/genética , Infecções por Campylobacter/diagnóstico , Gatos , Galinhas , Humanos , Lagartos , Reação em Cadeia da Polimerase , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Ovinos , Suínos
15.
Methods Mol Biol ; 1722: 3-20, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29264795

RESUMO

The bacterial surfaceome, comprising outer membrane-sorted and/or associated (i.e., cell transporters), cell surface-exposed (i.e., adhesins) and extracellularly secreted proteins (i.e., toxins), has been characterized in bacterial pathogens, such as Bordetella pertussis (Bp) to provide information for use in development of diagnostic and prevention strategies. This protein subset has clinical significance, as these bacterial proteins are often associated with attachment to host cells, microbial pathogenesis and antibody-mediated immunity. Here we describe classical surface membrane protein enrichment techniques, followed by proteomic methodologies, such as gel-free protein separation and antibody-affinity capture technologies in combination with nano-liquid chromatography mass spectrometry, for the identification and characterization of Bp surfaceome proteins.


Assuntos
Antígenos de Bactérias/análise , Proteínas da Membrana Bacteriana Externa/análise , Bordetella pertussis/isolamento & purificação , Proteômica/métodos , Sequência de Aminoácidos , Afinidade de Anticorpos/imunologia , Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Bordetella pertussis/imunologia , Soluções Tampão , Carbonatos/química , Cromatografia Líquida , Bases de Dados de Proteínas , Imunoprecipitação/métodos , Espectrometria de Massas em Tandem
16.
Parasit Vectors ; 10(1): 560, 2017 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-29121996

RESUMO

BACKGROUND: Microsporidia are intracellular obligate parasites traditionally associated with immunosuppressed patients; their detection in immunocompetent patients has increased, highlighting their possible importance as emerging pathogens. Detection of spores in stools, urine, body fluids and tissues is difficult and immunological techniques such as immunofluorescence have proved to be a useful and reliable tool in the diagnosis of human microsporidiosis. For this reason, we have produced and characterized monoclonal antibodies (MAbs) specific for Encephalitozoon intestinalis (the second most frequent microsporidian infecting humans), and other Encephalitozoon species, that can be used in different diagnostic techniques. RESULTS: Seven MAbs were selected in accordance with their optical density (OD). Four (4C4, 2C2, 2E5 and 2H2) were isotype IgG2a; two (3A5 and 3C9) isotype IgG3, and one Mab, 1D7, IgM isotype. The selected monoclonal antibody-secreting hybridomas were characterized by indirect immunofluorescence antibody test (IFAT), enzyme-linked immunosorbent assay (ELISA), Western blot, immunoelectron microscopy (Immunogold) and in vitro cultures. The study by IFAT showed different behavior depending on the MAbs studied. The MAbs 4C4, 2C2, 2E5 and 2H2 showed reactivity against epitopes in the wall of the spore (exospore and endospore) epitopes located in Encephalitozoon sp. spores, whereas the MAbs 3A5, 1D7 and 3C9 showed reactivity against internal epitopes (cytoplasmic contents or sporoplasm) of E. intestinalis spores. All MAbs recognized the developing parasites in the in vitro cultures of E. intestinalis. Additionally, 59 formalin-fixed stool samples that had been previously analyzed were screened, with 26 (44%) presenting microsporidian spores (18 samples with E. intestinalis and 8 samples with Enterocytozoon bieneusi). Detection of microsporidian spores by microscopy was performed using Calcofluor stain, Modified Trichrome, Quick-Hot Gram Chromotrope, as well as IFAT using MAbs 4C4, 2C2, 2E5 and 2H2. The 4 MAbs tested clearly recognized the larger spores corresponding to E. intestinalis, but showed no reactivity with Enterocytozoon bieneusi spores. The mass spectrometry and proteomic study revealed that the Mabs 4C4, 2C2, 2E5 and 2H2 recognized the Spore Wall Protein 1 (SWP1) as the antigenic target. CONCLUSIONS: The IFAT-positive MAbs exhibited excellent reactivity against spores and developmental stages, permitting their use in human and animal diagnosis. The epitopes recognized (exospore, endospore and cytoplasmic contents) by the different MAbs developed need further study, and may reveal potential targets for vaccine development, immunotherapy and chemotherapy.


Assuntos
Anticorpos Monoclonais/imunologia , Encephalitozoon/imunologia , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/imunologia , Anticorpos Monoclonais/química , Anticorpos Monoclonais/isolamento & purificação , Western Blotting , Encephalitozoon/isolamento & purificação , Encephalitozoon/fisiologia , Encefalitozoonose/diagnóstico , Encefalitozoonose/imunologia , Encefalitozoonose/microbiologia , Enterocytozoon/imunologia , Enterocytozoon/isolamento & purificação , Enterocytozoon/fisiologia , Fezes/microbiologia , Imunofluorescência , Humanos , Espectrometria de Massas/métodos , Microscopia , Microsporidiose/diagnóstico , Microsporidiose/imunologia , Microsporidiose/microbiologia , Proteômica/métodos , Esporos Fúngicos/isolamento & purificação , Esporos Fúngicos/ultraestrutura
17.
Anaerobe ; 45: 120-128, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28435010

RESUMO

Clostridium difficile is a spore-forming anaerobic intestinal pathogen that causes Clostridium difficile infection (CDI). C. difficile is the leading cause of toxin-mediated nosocomial antibiotic-associated diarrhea. The pathogenesis of CDI is attributed to two major virulence factors, TcdA and TcdB toxins, that cause the symptomatic infection. C. difficile also expresses a number of key proteins, including cell wall proteins (CWPs). S-layer proteins (SLPs) are CWPs that form a paracrystalline surface array that coats the surface of the bacterium. SLPs have a role in C. difficile binding to the gastrointestinal tract, but their importance in virulence need to be better elucidated. Here, we describe bottom-up proteomics analysis of surface-enriched proteins fractions obtained through glycine extraction of five C. difficile clinical isolates from Brazil using gel-based and gel-free approaches. We were able to identify approximately 250 proteins for each strain, among them SlpA, Cwp2, Cwp6, CwpV and Cwp84. Identified CWPs presented different amino acid coverage, which might suggest differences in post-translational modifications. Proteomic analysis of SLPs from ribotype 133, agent of C. difficile outbreaks in Brazil, revealed unique proteins and provided additional information towards in depth characterization of the strains causing CDI in Brazil.


Assuntos
Proteínas de Bactérias/análise , Clostridioides difficile/classificação , Infecções por Clostridium/epidemiologia , Infecções por Clostridium/microbiologia , Surtos de Doenças , Glicoproteínas de Membrana/análise , Ribotipagem , Brasil/epidemiologia , Clostridioides difficile/genética , Clostridioides difficile/isolamento & purificação , Humanos , Proteômica
18.
J Proteomics ; 154: 69-77, 2017 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-28003119

RESUMO

Mycoplasma hyopneumoniae and Mycoplasma flocculare cohabit the porcine respiratory tract. However, M. hyopneumoniae causes the porcine enzootic pneumonia, while M. flocculare is a commensal bacterium. Comparative analyses demonstrated high similarity between these species, which includes the sharing of all predicted virulence factors. Nevertheless, studies related to soluble secretomes of mycoplasmas were little known, although they are important for bacterial-host interactions. The aim of this study was to perform a comparative analysis between the soluble secreted proteins repertoires of the pathogenic Mycoplasma hyopneumoniae and its closely related commensal Mycoplasma flocculare. For that, bacteria were cultured in medium with reduced serum concentration and secreted proteins were identified by a LC-MS/MS proteomics approach. Altogether, 62 and 26 proteins were identified as secreted by M. hyopneumoniae and M. flocculare, respectively, being just seven proteins shared between these bacteria. In M. hyopneumoniae secretome, 15 proteins described as virulence factors were found; while four putative virulence factors were identified in M. flocculare secretome. For the first time, clear differences related to virulence were found between these species, helping to elucidate the pathogenic nature of M. hyopneumoniae to swine hosts. BIOLOGICAL SIGNIFICANCE: For the first time, the secretomes of two porcine respiratory mycoplasmas, namely the pathogenic M. hyopneumoniae and the commensal M. flocculare were compared. The presented results revealed previously unknown differences between these two genetically related species, some of which are associated to the M. hyopneumoniae ability to cause porcine enzootic pneumonia.


Assuntos
Mycoplasma hyopneumoniae/patogenicidade , Pneumonia Suína Micoplasmática/microbiologia , Animais , Proteínas de Bactérias/metabolismo , Mycoplasma/química , Mycoplasma/patogenicidade , Mycoplasma hyopneumoniae/química , Proteômica/métodos , Especificidade da Espécie , Suínos , Fatores de Virulência/análise
19.
Genome Announc ; 4(6)2016 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-28007855

RESUMO

Serum Institute of India is among the world's largest vaccine producers. Here, we report the complete genome sequences for four Bordetella pertussis strains used by Serum Institute of India in the production of whole-cell pertussis vaccines.

20.
PLoS Negl Trop Dis ; 9(9): e0004085, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26393918

RESUMO

BACKGROUND: The proteins responsible for the key molecular events leading to the structural changes between the developmental stages of Echinococcus granulosus remain unknown. In this work, azidohomoalanine (AHA)-specific labeling was used to identify proteins expressed by E. granulosus protoscoleces (PSCs) upon the induction of strobilar development. METHODOLOGY/PRINCIPAL FINDINGS: The in vitro incorporation of AHA with different tags into newly synthesized proteins (NSPs) by PSCs was analyzed using SDS-PAGE and confocal microscopy. The LC-MS/MS analysis of AHA-labeled NSPs by PSCs undergoing strobilation allowed for the identification of 365 proteins, of which 75 were differentially expressed in comparison between the presence or absence of strobilation stimuli and 51 were expressed exclusively in either condition. These proteins were mainly involved in metabolic, regulatory and signaling processes. CONCLUSIONS/SIGNIFICANCE: After the controlled-labeling of proteins during the induction of strobilar development, we identified modifications in protein expression. The changes in the metabolism and the activation of control and signaling pathways may be important for the correct parasite development and be target for further studies.


Assuntos
Echinococcus granulosus/química , Echinococcus granulosus/fisiologia , Proteínas de Helminto/análise , Matadouros , Animais , Bovinos , Doenças dos Bovinos/parasitologia , Cromatografia Líquida , Equinococose/parasitologia , Equinococose/veterinária , Eletroforese em Gel de Poliacrilamida , Perfilação da Expressão Gênica , Estágios do Ciclo de Vida , Microscopia Confocal , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA