Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Emerg Microbes Infect ; 13(1): 2356140, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38742328

RESUMO

Reverse genetic systems are mainly used to rescue recombinant viral strains in cell culture. These tools have also been used to generate, by inoculating infectious clones, viral strains directly in living animals. We previously developed the "Infectious Subgenomic Amplicons" (ISA) method, which enables the rescue of single-stranded positive sense RNA viruses in vitro by transfecting overlapping subgenomic DNA fragments. Here, we provide proof-of-concept for direct in vivo generation of infectious particles following the inoculation of subgenomic amplicons. First, we rescued a strain of tick-borne encephalitis virus in mice to transpose the ISA method in vivo. Subgenomic DNA fragments were amplified using a 3-fragment reverse genetics system and inoculated intramuscularly. Almost all animals were infected when quantities of DNA inoculated were at least 20 µg. We then optimized our procedure in order to increase the animal infection rate. This was achieved by adding an electroporation step and/or using a simplified 2- fragment reverse genetics system. Under optimal conditions, a large majority of animals were infected with doses of 20 ng of DNA. Finally, we demonstrated the versatility of this method by applying it to Japanese encephalitis and Chikungunya viruses. This method provides an efficient strategy for in vivo rescue of arboviruses. Furthermore, in the context of the development of DNA-launched live attenuated vaccines, this new approach may facilitate the generation of attenuated strains in vivo. It also enables to deliver a substance free of any vector DNA, which seems to be an important criterion for the development of human vaccines.


Assuntos
Arbovírus , Vírus da Encefalite Transmitidos por Carrapatos , Genética Reversa , Animais , Camundongos , Vírus da Encefalite Transmitidos por Carrapatos/genética , Vírus da Encefalite Transmitidos por Carrapatos/fisiologia , Genética Reversa/métodos , Arbovírus/genética , Vírus Chikungunya/genética , Vírus da Encefalite Japonesa (Espécie)/genética , DNA Viral/genética , Encefalite Transmitida por Carrapatos/virologia , Feminino , Genoma Viral , Febre de Chikungunya/virologia , Humanos
2.
Res Sq ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38585799

RESUMO

Jingmen tick virus (JMTV) is a recently discovered segmented RNA virus, closely related to flaviviruses. It was identified for the first time in 2014, in China and subsequently in Brazil. Following this discovery, JMTV-related sequences have been identified in arthropods, vertebrates (including humans), plants, fungus and environmental samples from Asia, America, Africa, Europe and Oceania. Several studies suggest an association between these segmented flavi-like viruses, termed jingmenviruses, and febrile illness in humans. The development of rapid diagnostic assays for these viruses is therefore crucial to be prepared for a potential epidemic, for the early detection of these viruses via vector surveillance or hospital diagnosis. In this study, we designed a RT-qPCR assay to detect tick-associated jingmenviruses, validated it and tested its range and limit of detection with six tick-associated jingmenviruses using in vitro transcripts. Then we screened ticks collected in Corsica (France) from different livestock species, in order to determine the distribution of these viruses on the island. In total, 6,269 ticks from eight species were collected from 763 cattle, 538 horses, 106 sheep and 218 wild boars and grouped in 1,715 pools. We report the first detection of JMTV in Corsica, in Rhipicephalus bursa, Hyalomma marginatum and R. sanguineus ticks collected from cattle and sheep. The highest prevalence was found in the Rhipicephalus genus. The complete genome of a Corsican JMTV was obtained from a pool of Rhipicephalus bursa ticks and shares between 94.7% and 95.1% nucleotide identity with a JMTV sequence corresponding to a human patient in Kosovo and groups phylogenetically with European JMTV strains. These results show that a Mediterranean island such as Corsica could act as a sentinel zone for future epidemics.

3.
Microorganisms ; 10(8)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36014057

RESUMO

In the absence of drugs to treat or prevent COVID-19, drug repurposing can be a valuable strategy. Despite a substantial number of clinical trials, drug repurposing did not deliver on its promise. While success was observed with some repurposed drugs (e.g., remdesivir, dexamethasone, tocilizumab, baricitinib), others failed to show clinical efficacy. One reason is the lack of clear translational processes based on adequate preclinical profiling before clinical evaluation. Combined with limitations of existing in vitro and in vivo models, there is a need for a systematic approach to urgent antiviral drug development in the context of a global pandemic. We implemented a methodology to test repurposed and experimental drugs to generate robust preclinical evidence for further clinical development. This translational drug development platform comprises in vitro, ex vivo, and in vivo models of SARS-CoV-2, along with pharmacokinetic modeling and simulation approaches to evaluate exposure levels in plasma and target organs. Here, we provide examples of identified repurposed antiviral drugs tested within our multidisciplinary collaboration to highlight lessons learned in urgent antiviral drug development during the COVID-19 pandemic. Our data confirm the importance of assessing in vitro and in vivo potency in multiple assays to boost the translatability of pre-clinical data. The value of pharmacokinetic modeling and simulations for compound prioritization is also discussed. We advocate the need for a standardized translational drug development platform for mild-to-moderate COVID-19 to generate preclinical evidence in support of clinical trials. We propose clear prerequisites for progression of drug candidates for repurposing into clinical trials. Further research is needed to gain a deeper understanding of the scope and limitations of the presented translational drug development platform.

4.
EBioMedicine ; 82: 104148, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35834886

RESUMO

BACKGROUND: To address the emergence of SARS-CoV-2, multiple clinical trials in humans were rapidly started, including those involving an oral treatment by nitazoxanide, despite no or limited pre-clinical evidence of antiviral efficacy. METHODS: In this work, we present a complete pre-clinical evaluation of the antiviral activity of nitazoxanide against SARS-CoV-2. FINDINGS: First, we confirmed the in vitro efficacy of nitazoxanide and tizoxanide (its active metabolite) against SARS-CoV-2. Then, we demonstrated nitazoxanide activity in a reconstructed bronchial human airway epithelium model. In a SARS-CoV-2 virus challenge model in hamsters, oral and intranasal treatment with nitazoxanide failed to impair viral replication in commonly affected organs. We hypothesized that this could be due to insufficient diffusion of the drug into organs of interest. Indeed, our pharmacokinetic study confirmed that concentrations of tizoxanide in organs of interest were always below the in vitro EC50. INTERPRETATION: These preclinical results suggest, if directly applicable to humans, that the standard formulation and dosage of nitazoxanide is not effective in providing antiviral therapy for Covid-19. FUNDING: This work was supported by the Fondation de France "call FLASH COVID-19", project TAMAC, by "Institut national de la santé et de la recherche médicale" through the REACTing (REsearch and ACTion targeting emerging infectious diseases), by REACTING/ANRS MIE under the agreement No. 21180 ('Activité des molécules antivirales dans le modèle hamster'), by European Virus Archive Global (EVA 213 GLOBAL) funded by the European Union's Horizon 2020 research and innovation program under grant agreement No. 871029 and DNDi under support by the Wellcome Trust Grant ref: 222489/Z/21/Z through the COVID-19 Therapeutics Accelerator".


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Cricetinae , Humanos , Nitrocompostos , Tiazóis
5.
Commun Biol ; 5(1): 225, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35273335

RESUMO

Late 2020, SARS-CoV-2 Alpha variant emerged in United Kingdom and gradually replaced G614 strains initially involved in the global spread of the pandemic. In this study, we use a Syrian hamster model to compare a clinical strain of Alpha variant with an ancestral G614 strain. The Alpha variant succeed to infect animals and to induce a pathology that mimics COVID-19. However, both strains replicate to almost the same level and induced a comparable disease and immune response. A slight fitness advantage is noted for the G614 strain during competition and transmission experiments. These data do not corroborate the epidemiological situation observed during the first half of 2021 in humans nor reports that showed a more rapid replication of Alpha variant in human reconstituted bronchial epithelium. This study highlights the need to combine data from different laboratories using various animal models to decipher the biological properties of newly emerging SARS-CoV-2 variants.


Assuntos
COVID-19 , Modelos Animais de Doenças , Mesocricetus , SARS-CoV-2/fisiologia , Animais , Anticorpos Neutralizantes/sangue , COVID-19/sangue , COVID-19/imunologia , COVID-19/virologia , Citocinas/genética , Feminino , Trato Gastrointestinal/virologia , Genoma Viral , Pulmão/virologia , Líquido da Lavagem Nasal/virologia , SARS-CoV-2/genética , Replicação Viral
6.
Antiviral Res ; 197: 105212, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34838583

RESUMO

Drug repositioning has been used extensively since the beginning of the COVID-19 pandemic in an attempt to identify antiviral molecules for use in human therapeutics. Hydroxychloroquine and azithromycin have shown inhibitory activity against SARS-CoV-2 replication in different cell lines. Based on such in vitro data and despite the weakness of preclinical assessment, many clinical trials were set up using these molecules. In the present study, we show that hydroxychloroquine and azithromycin alone or combined does not block SARS-CoV-2 replication in human bronchial airway epithelia. When tested in a Syrian hamster model, hydroxychloroquine and azithromycin administrated alone or combined displayed no significant effect on viral replication, clinical course of the disease and lung impairments, even at high doses. Hydroxychloroquine quantification in lung tissues confirmed strong exposure to the drug, above in vitro inhibitory concentrations. Overall, this study does not support the use of hydroxychloroquine and azithromycin as antiviral drugs for the treatment of SARS-CoV-2 infections.


Assuntos
Anti-Infecciosos/farmacologia , Azitromicina/farmacologia , Tratamento Farmacológico da COVID-19 , Hidroxicloroquina/farmacologia , SARS-CoV-2/efeitos dos fármacos , Animais , Anti-Infecciosos/administração & dosagem , Anti-Infecciosos/uso terapêutico , Azitromicina/administração & dosagem , Azitromicina/farmacocinética , Azitromicina/uso terapêutico , Brônquios/citologia , Brônquios/virologia , Chlorocebus aethiops , Cricetinae , Modelos Animais de Doenças , Quimioterapia Combinada , Feminino , Humanos , Hidroxicloroquina/administração & dosagem , Hidroxicloroquina/uso terapêutico , Pulmão/patologia , Mesocricetus , Pessoa de Meia-Idade , Plasma/virologia , Reação em Cadeia da Polimerase em Tempo Real , Células Vero
7.
J Gen Virol ; 102(11)2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34797756

RESUMO

Sandfly-borne phleboviruses are distributed widely throughout the Mediterranean Basin, presenting a threat to public health in areas where they circulate. However, the true diversity and distribution of pathogenic and apathogenic sandfly-borne phleboviruses remains a key issue to be studied. In the Balkans, most published data rely on serology-based studies although virus isolation has occasionally been reported. Here, we report the discovery of two novel sandfly-borne phleboviruses, provisionally named Zaba virus (ZABAV) and Bregalaka virus (BREV), which were isolated in Croatia and North Macedonia, respectively. This constitutes the first isolation of phleboviruses in both countries. Genetic analysis based on complete coding sequences indicated that ZABAV and BREV are distinct from each other and belong to the genus Phlebovirus, family Phenuiviridae. Phylogenetic and amino acid modelling of viral polymerase shows that ZABAV and BREV are new members of the Salehabad phlebovirus species and the Adana phlebovirus species, respectively. Moreover, sequence-based vector identification suggests that ZABAV is mainly transmitted by Phlebotomus neglectus and BREV is mainly transmitted by Phlebotomus perfiliewi. BREV neutralizing antibodies were detected in 3.3% of human sera with rates up to 16.7% in certain districts, demonstrating that BREV frequently infects humans in North Macedonia. In vitro viral growth kinetics experiments demonstrated viral replication of both viruses in mammalian and mosquito cells. In vivo experimental studies in mice suggest that ZABAV and BREV exhibit characteristics making them possible human pathogens.


Assuntos
Insetos Vetores/virologia , Phlebovirus/isolamento & purificação , Psychodidae/virologia , Animais , Croácia , Mosquitos Vetores , Phlebovirus/classificação , Phlebovirus/genética , Filogenia , República da Macedônia do Norte
8.
Antiviral Res ; 193: 105137, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34265358

RESUMO

Following the emergence of SARS-CoV-2, the search for an effective and rapidly available treatment was initiated worldwide based on repurposing of available drugs. Previous reports described the antiviral activity of certain tyrosine kinase inhibitors (TKIs) targeting the Abelson kinase 2 against pathogenic coronaviruses. Imatinib, one of them, has more than twenty years of safe utilization for the treatment of hematological malignancies. In this context, Imatinib was rapidly evaluated in clinical trials against Covid-19. Here, we present the pre-clinical evaluation of imatinib in multiple models. Our results indicated that imatinib and another TKI, the masitinib, exhibit an antiviral activity in VeroE6 cells. However, imatinib was inactive in a reconstructed bronchial human airway epithelium model. In vivo, imatinib therapy failed to impair SARS-CoV-2 replication in a golden Syrian hamster model despite high concentrations in plasma and in the lung. Overall, these results do not support the use of imatinib and similar TKIs as antivirals in the treatment of Covid-19.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Mesilato de Imatinib/farmacologia , SARS-CoV-2/efeitos dos fármacos , Animais , COVID-19/epidemiologia , COVID-19/virologia , Linhagem Celular , Chlorocebus aethiops , Avaliação Pré-Clínica de Medicamentos , Reposicionamento de Medicamentos , Inibidores Enzimáticos/farmacologia , Epitélio , Feminino , Humanos , Pulmão/patologia , Masculino , Mesocricetus , Células Vero , Replicação Viral/efeitos dos fármacos
9.
Nat Commun ; 12(1): 1735, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33741945

RESUMO

Despite no or limited pre-clinical evidence, repurposed drugs are massively evaluated in clinical trials to palliate the lack of antiviral molecules against SARS-CoV-2. Here we use a Syrian hamster model to assess the antiviral efficacy of favipiravir, understand its mechanism of action and determine its pharmacokinetics. When treatment is initiated before or simultaneously to infection, favipiravir has a strong dose effect, leading to reduction of infectious titers in lungs and clinical alleviation of the disease. Antiviral effect of favipiravir correlates with incorporation of a large number of mutations into viral genomes and decrease of viral infectivity. Antiviral efficacy is achieved with plasma drug exposure comparable with those previously found during human clinical trials. Notably, the highest dose of favipiravir tested is associated with signs of toxicity in animals. Thereby, pharmacokinetic and tolerance studies are required to determine whether similar effects can be safely achieved in humans.


Assuntos
Amidas/farmacologia , Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Pirazinas/farmacologia , SARS-CoV-2/efeitos dos fármacos , Animais , COVID-19/virologia , Chlorocebus aethiops , Cricetinae , Modelos Animais de Doenças , Feminino , Genoma Viral , Pulmão/virologia , Mesocricetus , SARS-CoV-2/genética , Células Vero , Carga Viral/efeitos dos fármacos
10.
Viruses ; 11(7)2019 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-31330809

RESUMO

Reverse genetic systems are essential for the study of RNA viruses. Infectious clones remain the most widely used systems to manipulate viral genomes. Recently, a new PCR-based method called ISA (infectious subgenomic amplicons) has been developed. This approach has resulted in greater genetic diversity of the viral populations than that observed using infectious clone technology. However, for some studies, generation of clonal viral populations is necessary. In this study, we used the tick-borne encephalitis virus as model to demonstrate that utilization of a very high-fidelity, DNA-dependent DNA polymerase during the PCR step of the ISA procedure gives the possibility to reduce the genetic diversity of viral populations. We also concluded that the fidelity of the polymerase is not the only factor influencing this diversity. Studying the impact of genotype modification on virus phenotype is a crucial step for the development of reverse genetic methods. Here, we also demonstrated that the utilization of different PCR polymerases did not affect the phenotype (replicative fitness in cellulo and virulence in vivo) compared to the initial ISA procedure and the use of an infectious clone. In conclusion, we provide here an approach to control the genetic diversity of RNA viruses without modifying their phenotype.


Assuntos
Genoma Viral , Genômica , Vírus de RNA/genética , Genética Reversa , Animais , Biodiversidade , Linhagem Celular , Feminino , Aptidão Genética , Variação Genética , Genômica/métodos , Humanos , Camundongos , Fenótipo , Infecções por Vírus de RNA/mortalidade , Infecções por Vírus de RNA/transmissão , Infecções por Vírus de RNA/virologia , Replicação Viral
11.
Viruses ; 11(5)2019 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-31126034

RESUMO

Phlebotomine sand flies are generalist vectors with significant implications for public health. They are able to transmit phleboviruses that cause sand fly fever, headaches, or meningitis in humans. Albania is a country in Southeast Europe with a typical Mediterranean climate which provides convenient conditions for the presence of sand flies. Hence, the circulation of phleboviruses, such as the Toscana and Balkan viruses, has been recently described in the country. We followed a virus discovery approach on sand fly samples collected in 2015 and 2016 in seven regions of Albania, with the aim to investigate and characterize potentially circulating phleboviruses in phlebotomine sand flies. A presumed novel phlebovirus was detected in a pool consisting of 24 Phlebotomus neglectus males. The virus was provisionally named the Drin virus after a river near the locality of Kukës, where the infected sand flies were trapped. Genetic and phylogenetic analysis revealed that the Drin virus is closely related to the Corfou (CFUV) virus, isolated in the 1980s from Phlebotomus major sand flies on the eponymous island of Greece, and may also be involved in human infections because of its similarity to the sand fly fever Sicilian virus. The latter justifies further studies to specifically address this concern. Together with recent findings, this study confirms that Albania and the Balkan peninsula are hot spots for phleboviruses.


Assuntos
Infecções por Bunyaviridae/epidemiologia , Infecções por Bunyaviridae/transmissão , Insetos Vetores/virologia , Phlebovirus/classificação , Psychodidae/virologia , Vigilância em Saúde Pública , Albânia/epidemiologia , Animais , Chlorocebus aethiops , Genoma Viral , Genômica/métodos , Geografia , Phlebovirus/isolamento & purificação , Filogenia , RNA Viral , Células Vero
12.
J Virol ; 89(23): 11773-85, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26355096

RESUMO

UNLABELLED: A new flavivirus, Ecuador Paraiso Escondido virus (EPEV), named after the village where it was discovered, was isolated from sand flies (Psathyromyia abonnenci, formerly Lutzomyia abonnenci) that are unique to the New World. This represents the first sand fly-borne flavivirus identified in the New World. EPEV exhibited a typical flavivirus genome organization. Nevertheless, the maximum pairwise amino acid sequence identity with currently recognized flaviviruses was 52.8%. Phylogenetic analysis of the complete coding sequence showed that EPEV represents a distinct clade which diverged from a lineage that was ancestral to the nonvectored flaviviruses Entebbe bat virus, Yokose virus, and Sokoluk virus and also the Aedes-associated mosquito-borne flaviviruses, which include yellow fever virus, Sepik virus, Saboya virus, and others. EPEV replicated in C6/36 mosquito cells, yielding high infectious titers, but failed to reproduce either in vertebrate cell lines (Vero, BHK, SW13, and XTC cells) or in suckling mouse brains. This surprising result, which appears to eliminate an association with vertebrate hosts in the life cycle of EPEV, is discussed in the context of the evolutionary origins of EPEV in the New World. IMPORTANCE: The flaviviruses are rarely (if ever) vectored by sand fly species, at least in the Old World. We have identified the first representative of a sand fly-associated flavivirus, Ecuador Paraiso Escondido virus (EPEV), in the New World. EPEV constitutes a novel clade according to current knowledge of the flaviviruses. Phylogenetic analysis of the virus genome showed that EPEV roots the Aedes-associated mosquito-borne flaviviruses, including yellow fever virus. In light of this new discovery, the New World origin of EPEV is discussed together with that of the other flaviviruses.


Assuntos
Flavivirus/classificação , Flavivirus/genética , Filogenia , Psychodidae/virologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Teorema de Bayes , Encéfalo/virologia , Linhagem Celular , Análise por Conglomerados , Equador , Flavivirus/fisiologia , Genoma Viral/genética , Camundongos , Modelos Genéticos , Dados de Sequência Molecular , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência , Especificidade da Espécie , Replicação Viral/fisiologia
13.
PLoS One ; 10(2): e0117849, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25719412

RESUMO

To generate the most diverse phylogenetic dataset for the flaviviruses to date, we determined the genomic sequences and phylogenetic relationships of 14 flaviviruses, of which 10 are primarily associated with Culex spp. mosquitoes. We analyze these data, in conjunction with a comprehensive collection of flavivirus genomes, to characterize flavivirus evolutionary and biogeographic history in unprecedented detail and breadth. Based on the presumed introduction of yellow fever virus into the Americas via the transatlantic slave trade, we extrapolated a timescale for a relevant subset of flaviviruses whose evolutionary history, shows that different Culex-spp. associated flaviviruses have been introduced from the Old World to the New World on at least five separate occasions, with 2 different sets of factors likely to have contributed to the dispersal of the different viruses. We also discuss the significance of programmed ribosomal frameshifting in a central region of the polyprotein open reading frame in some mosquito-associated flaviviruses.


Assuntos
Evolução Molecular , Flavivirus/genética , Genoma Viral , Fases de Leitura Aberta , Filogenia , Sequência de Bases , Flavivirus/classificação , Flavivirus/fisiologia , Mudança da Fase de Leitura do Gene Ribossômico , Dados de Sequência Molecular , Filogeografia
14.
Virology ; 464-465: 320-329, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25108382

RESUMO

Novel flaviviruses that are genetically related to pathogenic mosquito-borne flaviviruses (MBFV) have been isolated from mosquitoes in various geographical locations, including Finland. We isolated and characterized another novel virus of this group from Finnish mosquitoes collected in 2007, designated as Ilomantsi virus (ILOV). Unlike the MBFV that infect both vertebrates and mosquitoes, the MBFV-related viruses appear to be specific to mosquitoes similar to the insect-specific flaviviruses (ISFs). In this overview of MBFV-related viruses we conclude that they differ from the ISFs genetically and antigenically. Phylogenetic analyses separated the MBFV-related viruses isolated in Africa, the Middle East and South America from those isolated in Europe and Asia. Serological cross-reactions of MBFV-related viruses with other flaviviruses and their potential for vector-borne transmission require further characterization. The divergent MBFV-related viruses are probably significantly under sampled to date and provide new information on the variety, properties and evolution of vector-borne flaviviruses.


Assuntos
Culicidae/virologia , Evolução Molecular , Flavivirus/classificação , Flavivirus/isolamento & purificação , Insetos Vetores/virologia , Filogenia , África , Animais , Sequência de Bases , Culicidae/classificação , Feminino , Flavivirus/genética , Infecções por Flavivirus/transmissão , Infecções por Flavivirus/virologia , Humanos , Masculino , Dados de Sequência Molecular
15.
PLoS One ; 8(11): e80720, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24260463

RESUMO

We investigated whether small RNA (sRNA) sequenced from field-collected mosquitoes and chironomids (Diptera) can be used as a proxy signature of viral prevalence within a range of species and viral groups, using sRNAs sequenced from wild-caught specimens, to inform total RNA deep sequencing of samples of particular interest. Using this strategy, we sequenced from adult Anopheles maculipennis s.l. mosquitoes the apparently nearly complete genome of one previously undescribed virus related to chronic bee paralysis virus, and, from a pool of Ochlerotatus caspius and Oc. detritus mosquitoes, a nearly complete entomobirnavirus genome. We also reconstructed long sequences (1503-6557 nt) related to at least nine other viruses. Crucially, several of the sequences detected were reconstructed from host organisms highly divergent from those in which related viruses have been previously isolated or discovered. It is clear that viral transmission and maintenance cycles in nature are likely to be significantly more complex and taxonomically diverse than previously expected.


Assuntos
Dípteros/virologia , Vírus de Insetos/classificação , Vírus de Insetos/genética , RNA Viral , Animais , Sequência de Bases , Códon , Culicidae/virologia , Entomobirnavirus/classificação , Entomobirnavirus/genética , Mutação da Fase de Leitura , Genoma Viral , Dados de Sequência Molecular , Filogenia , Polimorfismo Genético , Fases de Leitura , Reprodutibilidade dos Testes , Alinhamento de Sequência , Análise de Sequência de DNA , Regiões não Traduzidas
17.
Virology ; 433(2): 471-8, 2012 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-22999256

RESUMO

Mosquitoes collected in Finland were screened for flaviviral RNA leading to the discovery and isolation of a novel flavivirus designated Hanko virus (HANKV). Virus characterization, including phylogenetic analysis of the complete coding sequence, confirmed HANKV as a member of the "insect-specific" flavivirus (ISF) group. HANKV is the first member of this group isolated from northern Europe, and therefore the first northern European ISF for which the complete coding sequence has been determined. HANKV was not transcribed as DNA in mosquito cell culture, which appears atypical for an ISF. HANKV shared highest sequence homology with the partial NS5 sequence available for the recently discovered Spanish Ochlerotatus flavivirus (SOcFV). Retrospective analysis of mitochondrial sequences from the virus-positive mosquito pool suggested an Ochlerotatus mosquito species as the most likely host for HANKV. HANKV and SOcFV may therefore represent a novel group of Ochlerotatus-hosted insect-specific flaviviruses in Europe and further afield.


Assuntos
Culicidae/virologia , Flavivirus/classificação , Flavivirus/isolamento & purificação , Animais , Finlândia , Flavivirus/genética , Genoma Viral , Fases de Leitura Aberta , Filogenia , RNA Viral/genética
18.
J Gen Virol ; 93(Pt 10): 2158-2170, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22764316

RESUMO

Duck egg-drop syndrome virus (DEDSV) is a newly emerging pathogenic flavivirus causing avian diseases in China. The infection occurs in laying ducks characterized by a severe drop in egg production with a fatality rate of 5-15 %. The virus was found to be most closely related to Tembusu virus (TMUV), an isolate from mosquitoes in South-east Asia. Here, we have sequenced and characterized the full-length genomes of seven DEDSV strains, including the 5'- and 3'-non-coding regions (NCRs). We also report for the first time the ORF sequences of TMUV and Sitiawan virus (STWV), another closely related flavivirus isolated from diseased chickens. We analysed the phylogenetic and antigenic relationships of DEDSV in relation to the Asian viruses TMUV and STWV, and other representative flaviviruses. Our results confirm the close relationship between DEDSV and TMUV/STWV and we discuss their probable evolutionary origins. We have also characterized the cleavage sites, potential glycosylation sites and unique motifs/modules of these viruses. Additionally, conserved sequences in both 5'- and 3'-NCRs were identified and the predicted secondary structures of the terminal sequences were studied. Antigenic cross-reactivity comparisons of DEDSV with related pathogenic flaviviruses identified a surprisingly close relationship with dengue virus (DENV) and raised the question of whether or not DEDSV may have a potential infectious threat to man. Importantly, DEDSV can be efficiently recognized by a broadly cross-reactive flavivirus mAb, 2A10G6, derived against DENV. The significance of these studies is discussed in the context of the emergence, evolution, epidemiology, antigenicity and pathogenicity of the newly emergent DEDSV.


Assuntos
Antígenos/imunologia , Infecções por Flavivirus/veterinária , Flavivirus/genética , Flavivirus/imunologia , Genoma Viral , Doenças das Aves Domésticas/virologia , Sequência de Aminoácidos , Animais , Antígenos/genética , Sequência de Bases , Linhagem Celular , China , Reações Cruzadas , Cisteína/genética , Vírus da Dengue/genética , Vírus da Dengue/imunologia , Patos/imunologia , Patos/virologia , Infecções por Flavivirus/virologia , Glicosilação , Dados de Sequência Molecular , Fases de Leitura Aberta , Filogenia , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/imunologia , Análise de Sequência de DNA
19.
Vector Borne Zoonotic Dis ; 12(10): 893-903, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22651393

RESUMO

A total of 821 tissue samples from rodents trapped during field campaigns organized in Europe and Africa were screened for the presence of arenaviruses by molecular methods and cell culture inoculation when feasible. Two Mus musculus domesticus trapped in the southwestern part of France were infected with a potentially new strain of lymphocytic choriomeningitis virus (LCMV), here referred to as LCMV strain HP65-2009, which was isolated and genetically characterized by whole genome sequencing. Genetic and phylogenetic analyses comparing LCMV HP65-2009 with 26 other LCMV strains showed that it represents a novel highly-divergent strain within the group of Mus musculus-associated LCMV.


Assuntos
Gerbillinae/virologia , Coriomeningite Linfocítica/virologia , Vírus da Coriomeningite Linfocítica/isolamento & purificação , Camundongos/virologia , Doenças dos Roedores/virologia , Animais , Sequência de Bases , Chlorocebus aethiops , França , Genoma Viral/genética , Vírus da Coriomeningite Linfocítica/genética , Vírus da Coriomeningite Linfocítica/ultraestrutura , Dados de Sequência Molecular , Filogenia , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real , Roedores , Análise de Sequência de DNA , Especificidade da Espécie , Células Vero
20.
J Gen Virol ; 93(Pt 2): 223-234, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22012464

RESUMO

There has been an explosion in the discovery of 'insect-specific' flaviviruses and/or their related sequences in natural mosquito populations. Herein we review all 'insect-specific' flavivirus sequences currently available and conduct phylogenetic analyses of both the 'insect-specific' flaviviruses and available sequences of the entire genus Flavivirus. We show that there is no statistical support for virus-mosquito co-divergence, suggesting that the 'insect-specific' flaviviruses may have undergone multiple introductions with frequent host switching. We discuss potential implications for the evolution of vectoring within the family Flaviviridae. We also provide preliminary evidence for potential recombination events in the history of cell fusing agent virus. Finally, we consider priorities and guidelines for future research on 'insect-specific' flaviviruses, including the vast potential that exists for the study of biodiversity within a range of potential hosts and vectors, and its effect on the emergence and maintenance of the flaviviruses.


Assuntos
Evolução Molecular , Flavivirus/genética , Insetos/virologia , Animais , Análise por Conglomerados , Flavivirus/classificação , Flavivirus/isolamento & purificação , Filogenia , RNA Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA