Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Vet Pathol ; : 3009858241249108, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38712876

RESUMO

Novel goose parvovirus (NGPV) is continuously threatening the global duck industry, as it causes short beak and dwarfism syndrome among different duck breeds. In this study, we investigated the viral pathogenesis in the tongue of affected ducks, as a new approach for deeper understanding of the syndrome. Seventy-three, 14- to 60-day-old commercial Pekin ducks were clinically examined. Thirty tissue pools of intestine and tongue (15 per tissue) were submitted for molecular identification. Clinical signs in the examined ducks were suggestive of parvovirus infection. All examined ducks had short beaks. Necrotic, swollen, and congested protruding tongues were recorded in adult ducks (37/73, 51%). Tongue protrusion without any marked congestion or swelling was observed in 20-day-old ducklings (13/73, 18%), and no tongue protrusion was observed in 15-day-old ducklings (23/73, 32%). Microscopically, the protruding tongues of adult ducks showed necrosis of the superficial epithelial layer with vacuolar degeneration. Glossitis was present in the nonprotruding tongues of young ducks, which was characterized by multifocal lymphoplasmacytic aggregates and edema in the propria submucosa. Immunohistochemical examination displayed parvovirus immunolabeling, mainly in the tongue propria submucosa. Based on polymerase chain reaction, goose parvovirus was detected in 9 out of 15 tongue sample pools (60%). Next-generation sequencing confirmed the presence of a variant goose parvovirus that is globally named NGPV and closely related to Chinese NGPV isolates. Novel insights are being gained from the study of NGPV pathogenesis in the tongue based on molecular and immunohistochemical identification.

2.
ACS Omega ; 9(12): 14198-14209, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38559915

RESUMO

In this work, a novel, green, and atom-efficient method for the synthesis of tetrahydro-ß-carboline derivatives using electrochemistry (EC) in deep eutectic solvents (DESs) was reported. The EC reaction conditions were optimized to achieve the highest yield. The experimental design was also optimized to perform the reaction in a two-step, one-pot reaction, thereby the time, workup procedure, and solvents needed were all reduced. The new approach achieved our strategy as EC served to decrease the time of reaction, eliminate the use of hazardous catalysts, and lower the energy required for the synthesis of the targeted compounds. On the other side, DESs were used as catalysts, in situ electrolytes, and noninflammable green solvents. The scope of the reaction was investigated using different aromatic aldehydes. Finally, the scalability of the reaction was investigated using a gram-scale reaction that afforded the product in an excellent yield.

4.
BMC Vet Res ; 20(1): 105, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493097

RESUMO

The aim of this study was to examine the effects of salt addition on the skin gene expression of Mucin, Antimicrobial peptides, cortisol, and glucose in Oreochromis niloticus after 5-hour transportation in water. Three groups were compared: Control, post-transport without salt (PT-S), and post-transport with 5 g salt-1(PT + S), with a stocking density of 28.6 gL-1, 20 fish for each experimental group. The results showed that the PT-S group had more significant changes in gene expression than the PT + S group, suggesting that salt alleviated the stress and immune responses of O. niloticus. The PT-S group had higher expression of mucin- 2(MUC + 2) (7.58 folds) and mucin-5AC (MUC5-AC) (6.29 folds) than the PT + S group (3.30 folds and 4.16 folds, respectively). The PT-S group also had lower expression of ß-defensin-1 (Dß1) (0.42 folds), ß-defensin-2 (Dß2) (0.29 folds), and Cath1 (0.16 folds) than the PT + S group (0.82 folds, 0.69 folds, and 0.75 folds, respectively). The skin morphology of the PT-S group revealed some white patches with no goblet cell openings, while the PT + S group had better preservation of skin features with some goblet cell openings and slight white patches. This study indicates that O. niloticus can benefit from sodium chloride during transportation, as it helps to reduce stress and inflammation, balance mineral levels, enhance health and immunity, and regulate mucous secretion.


Assuntos
Ciclídeos , Doenças dos Peixes , beta-Defensinas , Animais , Cloreto de Sódio , beta-Defensinas/genética , Água , Mucinas , Ração Animal/análise , Dieta
5.
J Parasit Dis ; 48(1): 14-24, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38440749

RESUMO

Complications of parasite infections, especially kidney disease, have been linked to poorer outcomes. Acute kidney damage, glomerulonephritis, and tubular dysfunction are the most prevalent renal consequences of Parascaris equorum infection. The purpose of this study was to determine the pharmacological effects of green-produced zinc oxide nanoparticles (ZnO NPs) on P. equorum infection in male Wistar rats. Thirty-six male rats were divided into two groups of 18 each: infected and non-infected. Both groups were separated into three subgroups, each of which received distilled water, 30 mg/kg ZnO NPs, and 60 mg/kg ZnO NPs. After 10 days of ZnO NPs administration, four larvae per gram of kidney tissue were present in the untreated infected group. While, no larvae were present in ZnO NPs (30 mg/kg) treated group, and one larva/g.tissue was present in ZnO NPs (60 mg/kg) treated group compared to untreated infected animals. P. equorum infected rats had increased kidney biomarkers (creatinine, urea, uric acid), malondialdehyde, and nitric oxide, with a significant decrease in their antioxidant systems. On the other hand, infected treated rats with green-produced zinc oxide nanoparticles had a substantial drop in creatinine, urea, uric acid, malondialdehyde, and nitric oxide, as well as a significant rise in their antioxidant systems. P. equorum infection in rats caused severe degenerative and necrotic renal tissues. On the other hand, there were no detectable histopathological alterations in rats treated with ZnO NPs (30, 60 mg/kg) as compared to the infected untreated animals. When compared to infected untreated mice, immunohistochemical examination of nuclear factor-kappa B showed a significant decrease during treatment with ZnO NPs (30, 60 mg/kg). Green-produced zinc oxide nanoparticles are a viable therapeutic strategy for Parascaris equorum infection due to their potent anthelmintic activity, including a significant decrease in larval burden in infected treated rats.

6.
Int J Pharm ; 653: 123876, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38331331

RESUMO

Rheumatoid arthritis (RA) is a joint-destructive autoimmune disease that severely affects joint function. Despite the variability of treatment protocols, all of them are associated with severe side effects that compromise patient compliance. The main aim of the current study is to prepare localized effective RA treatment with reduced side effects by combining nanoencapsulation, photodynamic therapy (PDT) and hollow microneedles (Ho-MNs) to maximize the pharmacological effects of hypericin (HYP). To attain this, HYP-loaded emulsomes (EMLs) were prepared, characterized and administered through intradermal injection using AdminPen™ Ho-MNs combined with PDT in rats with an adjuvant-induced RA model. The prepared EMLs had a spherical shape and particle size was about 93.46 nm with an absolute entrapment efficiency. Moreover, confocal imaging indicated the interesting capability of Ho-MNs to deposit the HYP EMLs to a depth reaching 1560 µm into the subcutaneous tissue. In vivo, study results demonstrated that the group treated with HYP EMLs through Ho-MNs combined with PDT had no significant differences in joint diameter, TNF-α, IL1, HO-1, NRF2 and SD levels compared with the negative control group. Similarly, rats treated with the combination of HYP EMLs, Ho-MNs and PDT showed superior joint healing efficacy compared with the groups treated with HYP EMLs in dark, HYP ointment or HYP in microneedles in histopathological examination. These findings highlight the promising potential of photoactivated HYP EMLs when combined with Ho-MNs technology for RA management. The presented therapeutic EMLs-MNs platform could serve as a powerful game-changer in the development of future localized RA treatments.


Assuntos
Artrite Reumatoide , Perileno/análogos & derivados , Fotoquimioterapia , Humanos , Ratos , Animais , Fotoquimioterapia/métodos , Antracenos , Artrite Reumatoide/tratamento farmacológico , Fármacos Fotossensibilizantes
7.
BMC Vet Res ; 20(1): 55, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38350905

RESUMO

Oreochromis niloticus (Nile tilapia) is a well-known economic fish species that can thrive under the right environmental circumstances. The transport of live fish, either for food or as companion animals, presents a big issue for animal welfare at the same time it is considered one of stressful conditions. Hence, the present study investigated the skin histopathological responses of O. niloticus that were attributed to stress and salt addition during transportation. Three experimental groups of O. niloticus the 1st is the control non-transported group (CG), the 2nd is transport in water without salt (PT-S) and the 3rd is transport in water containing 5gL- 1salt (PT + S), the last 2 groups were transported in 5 h transport model. Results indicate that the skin of PT-S fish showed a marked decrease in epidermal thickness, decreased number of goblet cells, and an increase in the sub-epidermal and dermal pigments with the presence of large edematous vacuoles. Fish skin from PT + S demonstrated mild hydropic swelling in epidermal cells with normal goblet (mucous) cells density, and more or less normal melanin pigment distribution in sub epidermis and on the dermis layers, however, dermis showed mild edematous spaces. Scanning microscopy of PT-S skin tissue showed few scratched white patches among normal regions that may represent a thickened surface with the decreased number of goblets cell opening, while the PT + S group showed moderate preservation of surface skin architectures with the presence of goblet (mucous) cells opening in spite of presence of slight thickened white patches. The estimated total lesion changes present in PT-S group showed a significant increase (P < 0.001) compared with the control (CG) group. On the other hand, PT + S showed significant (P < 0.001) improvement in the overall previously recorded changes compared with the PT-S group, and a non- significant change in the histological architectures compared with the control group. Our findings underlined the importance of skin and its mucous cover health during transportation. The use 5 gL- 1salt during O. niloticus transportation appears to preserve the surface skin features, and keep the goblet (mucous) cells open to the external surface, and may act as a deterrent for the release of mucus from goblet (mucous) cells in response to stress and lessen the stress of transportation.


Assuntos
Ciclídeos , Doenças dos Peixes , Animais , Pele/metabolismo , Epiderme
8.
Calcif Tissue Int ; 114(1): 9-23, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37603077

RESUMO

Weakness, one of the key characteristics of sarcopenia, is a significant risk factor for functional limitations and disability in older adults. It has long been suspected that reductions in motor unit firing rates (MUFRs) are one of the mechanistic causes of age-related weakness. However, prior work has not investigated the extent to which MUFR is associated with clinically meaningful weakness in older adults. Forty-three community-dwelling older adults (mean: 75.4 ± 7.4 years; 46.5% female) and 24 young adults (mean: 22.0 ± 1.8 years; 58.3% female) performed torque matching tasks at varying submaximal intensities with their non-dominant leg extensors. Decomposed surface electromyographic recordings were used to quantify MUFRs from the vastus lateralis muscle. Computational modeling was subsequently used to independently predict how slowed MUFRs would negatively impact strength in older adults. Bivariate correlations between MUFRs and indices of lean mass, voluntary activation, and physical function/mobility were also assessed in older adults. Weak older adults (n = 14) exhibited an approximate 1.5 and 3 Hz reduction in MUFR relative to non-weak older adults (n = 29) at 50% and 80% MVC, respectively. Older adults also exhibited an approximate 3 Hz reduction in MUFR relative to young adults at 80% MVC only. Our model predicted that a 3 Hz reduction in MUFR results in a strength decrement of 11-26%. Additionally, significant correlations were found between slower MUFRs and poorer neuromuscular quality, voluntary activation, chair rise time performance, and stair climb power (r's = 0.31 to 0.43). These findings provide evidence that slowed MUFRs are mechanistically linked with clinically meaningful leg extensor weakness in older adults.


Assuntos
Fragilidade , Músculo Esquelético , Adulto Jovem , Humanos , Feminino , Idoso , Masculino , Músculo Esquelético/fisiologia , Perna (Membro) , Neurônios Motores/fisiologia , Fatores de Risco , Força Muscular/fisiologia
9.
Poult Sci ; 103(1): 103227, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38041891

RESUMO

The chicken business faces substantial economic losses due to the risk of parasitic coinfection. Because the current study aimed to investigate enteric parasitic coinfections problems among the suspected examined chicken farms, samples were collected during the field investigation from suspected freshly dead birds, clinically diseased, apparently healthy, and litter samples for further laboratory parasitological, histopathological, and immunological examinations. Variable mortalities with various clinical indicators, such as ruffled feathers, weight loss, diarrhea of various colors, and a decline in egg production, occurred on the farms under investigation. In addition, the treatment protocols of each of the farms that were evaluated were documented and the m-RNA levels of some cytokines and apoptotic genes among the infected poultry have been assessed. The prevalence rate of parasitic coinfection in the current study was found to be 8/120 (6.66%). Parasitological analysis of the samples revealed that they belonged to distinct species of Eimeria, cestodes, and Ascaridia galli. When deposited, A. galli eggs were nonembryonated and ellipsoidal, but cestodes eggs possessed a thin, translucent membrane that was subspherical. Eimeria spp. oocysts in layer chickens were identified as Eimeria acervulina and Eimeria maxima in broiler chickens. Our findings proved that coinfection significantly upregulated the IL-1ß, BAX, and Cas-3 genes. Conversely, the IL-10, BCL-2, and AKT mRNA levels were downregulated, indicating that nematode triggered apoptosis. The existence of parasite coinfection was verified by histological investigation of the various intestinal segments obtained from affected flocks. A. galli and cestodes obstructed the intestinal lumen, causing different histological alternations in the intestinal mucosa. Additionally, the lamina propria revealed different developmental stages of Eimeria spp. It was determined that parasite coinfection poses a significant risk to the poultry industry. It was recommended that stringent sanitary measures management methods, together with appropriate treatment and preventative procedures, be employed in order to resolve such issues.


Assuntos
Coccidiose , Coinfecção , Eimeria , Parasitos , Doenças das Aves Domésticas , Animais , Coccidiose/epidemiologia , Coccidiose/veterinária , Coccidiose/parasitologia , Galinhas/parasitologia , Coinfecção/epidemiologia , Coinfecção/veterinária , Doenças das Aves Domésticas/parasitologia , Óvulo , Eimeria/genética
10.
PeerJ ; 11: e16576, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38089915

RESUMO

Background: Hemolytic anemia (HA) is a serious health condition resulting from reduced erythrocytes' average life span. Echinochrome (Ech) is a dark-red pigment found in shells and spines of sea urchins. Aim: Studying the potential therapeutic effect of Ech on phenylhydrazine (PHZ)-induced HA in rats. Methods: Eighteen rats were divided into three groups (n = 6): the control group, the phenylhydrazine-induced HA group and the Ech group, injected intraperitoneally with PHZ and supplemented with oral Ech daily for 6 days. Results: Ech resulted in a considerable increase in RBCs, WBCs, and platelets counts, hemoglobin, reduced glutathione, catalase, and glutathione-S-transferase levels, and a significant decrease in aspartate & alanine aminotransferases, alkaline phosphatase, gamma-glutamyl transferase, bilirubin, creatinine, urea, urate, malondialdehyde & nitric oxide levels in anemic rats. Histopathological examination of liver and kidney tissue samples showed marked improvement. Conclusion: Ech ameliorated phenylhydrazine-induced HA with a hepatorenal protective effect owing to its anti-inflammatory and antioxidant properties.


Assuntos
Anemia Hemolítica , Estresse Oxidativo , Ratos , Animais , Antioxidantes/farmacologia , Anemia Hemolítica/induzido quimicamente , gama-Glutamiltransferase/farmacologia , Glutationa Transferase/efeitos adversos , Fenil-Hidrazinas/efeitos adversos
11.
PLoS One ; 18(12): e0294348, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38064451

RESUMO

The study presents a meshless computational approach for simulating the three-dimensional multi-term time-fractional mobile-immobile diffusion equation in the Caputo sense. The methodology combines a stable Crank-Nicolson time-integration scheme with the definition of the Caputo derivative to discretize the problem in the temporal direction. The spatial function derivative is approximated using the inverse multiquadric radial basis function. The solution is approximated on a set of scattered or uniform nodes, resulting in a sparse and well-conditioned coefficient matrix. The study highlights the advantages of meshless method, particularly their simplicity of implementation in higher dimensions. To validate the accuracy and efficacy of the proposed method, we performed numerical simulations and compared them with analytical solutions for various test problems. These simulations were carried out on computational domains of both rectangular and non-rectangular shapes. The research highlights the potential of meshless techniques in solving complex diffusion problems and its successful applications in groundwater contamination and other relevant fields.


Assuntos
Água Subterrânea , Modelos Teóricos , Movimentos da Água , Soluções , Difusão
12.
Acta Parasitol ; 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057445

RESUMO

MAIN CONCLUSIONS: Green-synthesized zinc oxide nanoparticle is a promising treatment modality against parasitic infection through its powerful anthelmintic, antioxidant, healing promotion, and anti-inflammation effects. BACKGROUND: Nanoparticles have many properties, depending on their size, shape, and morphology, allowing them to interact with microorganisms, plants, and animals. OBJECTIVES: Investigation of the therapeutic effects of green-synthesized zinc oxide nanoparticles (ZnO NPs) on Parascaris equorum infection in rats. METHODS: Thirty-six rats were divided into two divisions: the first division is noninfected groups were allocated into three groups. Group 1: Control, group 2: ZnO NPs (30 mg/kg), and group 3: ZnO NPs (60 mg/kg). The second division is infected groups were allocated into three groups. Group 1: vehicle, group 2: ZnO NPs (30 mg/kg), and group 3: ZnO NPs (60 mg/kg). FINDINGS: Ten days post-infection, two larvae per gram of liver tissue were present in the vehicle group compared to the control group. No larvae were recovered from ZnO NPs (30 mg/kg), and one larva/g.tissue from ZnO NPs (60 mg/kg)-treated groups compared to untreated infected animals. Green-synthesized ZnO NPs caused a significant decrease in liver functions, low-density lipoprotein (LDL), cholesterol, triglycerides, malondialdehyde (MDA), and nitric oxide (NO). While it caused a significant increase in hemoglobin (HB), high-density lipoprotein (HDL), butyrylcholinesterase (BCHE), glutathione (GSH), catalase (CAT), and glutathione S-transferase (GST) in infected treated rats. The histological inflammation and fibroplasia scores showed a significant enhancement during the treatment with ZnO NPs (30, 60 mg/kg) compared to the infected untreated animals that scored the highest pathological destruction score. Immunohistochemical markers of NF-κB showed a significant decrease during the treatment with ZnO NPs (30, 60 mg/kg) compared to the infected untreated animals.

13.
Eur Heart J Suppl ; 25(Suppl H): H8-H12, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38046888

RESUMO

Pacemaker therapy is the cornerstone in treatment of bradycardia and conduction disorders. Several diagnostic tools are utilized to diagnose and guide the physicians for appropriate management and accordingly proper utilization of pacemaker therapy. The current article is discussing the different diagnostics used for appropriate evaluation and diagnosis of bradyarrhythmias and the suggested solutions to improve bradycardia diagnosis and pacemaker therapy utilization in underpenetrated areas.

14.
J Acoust Soc Am ; 154(6): 3943-3954, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38147018

RESUMO

Thermoacoustic refrigerators exploit the thermodynamic interaction between oscillating gas particles and a porous solid to generate a temperature gradient that provides a cooling effect. In this work, we present a resonator with dual enclosed driver end-caps and show that the temperature gradient across a ceramic thermoacoustic element placed in the cavity could be controlled by modifying the phase difference of the drivers, thus enabling precise control of the refrigeration capability via the temperature difference. Through deltaec simulation results, the response of the temperature gradient to various dynamic boundary conditions that alter the time-phasing and wave dynamics in the resonator are demonstrated. An experimental apparatus is constructed with two moving-coil speakers and a ceramic stack, which is shown to exhibit a temperature gradient along its length, based on the traveling-wave-like nature of the acoustic wave excited by the speakers. By adjusting the relative phase lag between the two speakers, the temperature gradient across the stack is made to increase, decrease, or flip sign. Finally, a desired temperature difference that changes in time is achieved. The results presented in this work represent a key conceptual advancement of thermoacoustic-based temperature control devices that can better serve in extreme environments and precision applications.

15.
Nanoscale ; 15(45): 18457-18472, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37941481

RESUMO

Clay nanoparticles, in particular synthetic smectites, have generated interest in the field of tissue engineering and regenerative medicine due to their utility as cross-linkers for polymers in biomaterial design and as protein release modifiers for growth factor delivery. In addition, recent studies have suggested a direct influence on the osteogenic differentiation of responsive stem and progenitor cell populations. Relatively little is known however about the mechanisms underlying nanoclay bioactivity and in particular the cellular processes involved in nanoclay-stem cell interactions. In this study we employed confocal microscopy, inductively coupled plasma mass spectrometry and transmission electron microscopy to track the interactions between clay nanoparticles and human bone marrow stromal cells (hBMSCs). In particular we studied nanoparticle cellular uptake mechanisms and uptake kinetics, intracellular trafficking pathways and the fate of endocytosed nanoclay. We found that nanoclay particles present on the cell surface as µm-sized aggregates, enter hBMSCs through clathrin-mediated endocytosis, and their uptake kinetics follow a linear increase with time during the first week of nanoclay addition. The endocytosed particles were observed within the endosomal/lysosomal compartments and we found evidence for both intracellular degradation of nanoclay and exocytosis as well as an increase in autophagosomal activity. Inhibitor studies indicated that endocytosis was required for nanoclay upregulation of alkaline phosphatase activity but a similar dependency was not observed for autophagy. This study into the nature of nanoclay-stem cell interactions, in particular the intracellular processing of nanosilicate, may provide insights into the mechanisms underlying nanoclay bioactivity and inform the successful utilisation of clay nanoparticles in biomaterial design.


Assuntos
Células-Tronco Mesenquimais , Nanopartículas , Humanos , Osteogênese , Argila , Engenharia Tecidual , Materiais Biocompatíveis , Nanopartículas/química
16.
Food Chem Toxicol ; 182: 114191, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37980978

RESUMO

This study investigated the effect of oral dosing of titanium dioxide nanoparticles (TNPs) and cadmium (Cd2+) on rat liver and the potential protective role of coenzyme Q10 (CQ10) against TNPs and Cd2+-induced hepatic injury. Seventy male Sprague Dawley rats were divided into seven groups and orally given distilled water, corn oil, CQ10 (10 mg/kg b.wt), TNPs (50 mg/kg b.wt), Cd2+ (5 mg/kg b.wt), TNPs + Cd2+, or TNPs + Cd2++CQ10 by gastric gavage for 60 successive days. The results showed that individual or mutual exposure to TNPs and Cd2+ significantly increased the serum levels of various hepatic enzymes and lipids, depleted the hepatic content of antioxidant enzymes, and increased malondialdehyde. Moreover, the hepatic titanium and Cd2+ content were increased considerably in TNPs and/or Cd2+-exposed rats. Furthermore, marked histopathological perturbations with increased immunoexpression of tumor necrosis factor-alpha and nuclear factor kappa B were evident in TNPs and/or Cd2+-exposed rats. However, CQ10 significantly counteracted the damaging effect of combined exposure of TNPs and Cd2+ on the liver. The study concluded that TNPs and Cd2+ exposure harm hepatic function and its architecture, particularly at their mutual exposure, but CQ10 could be a candidate protective agent against TNPs and Cd2+ hepatotoxic impacts.


Assuntos
Nanopartículas , Fator de Necrose Tumoral alfa , Ratos , Masculino , Animais , Fator de Necrose Tumoral alfa/metabolismo , NF-kappa B/metabolismo , Titânio/toxicidade , Cádmio/toxicidade , Cádmio/metabolismo , Estresse Oxidativo , Ratos Sprague-Dawley , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Fígado , Nanopartículas/toxicidade
17.
CVIR Endovasc ; 6(1): 53, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37899370

RESUMO

BACKGROUND: Compared to conventional open surgery, minimally invasive catheter-based procedures have less post procedural complications. Transcatheter aortic valve implantation (TAVI) and endovascular aneurysm repair (EVAR) require large bore arterial access. Optimal site management of large bore arterial access is pivotal to reduce the hospital-acquired complications associated with large bore arterial access. We wanted to compare surgical cutdown versus percutaneous closure devices in site management of large bore arterial access. METHODS: Participants planned for TAVI or EVAR with large bore arterial access more than 10 French were included, while participants with history of bypass surgery, malignancies, thrombophilia, or sepsis were excluded. A consecutive sample of 100 participants (mean age 74.66 ± 2.65 years, 61% males) was selected, underwent TAVI or EVAR with surgical cutdown (group 1) versus TAVI or EVAR with Proglide™ percutaneous closure device (group 2). RESULTS: The incidence rate of hematoma was significantly lower in group 2 versus group 1 (p = 0.014), the mean procedure time (minutes) and the median hospital stay (days) were significantly higher in group 1 versus group 2 (t(98) = - 2.631, p = 0.01, and U = 2.403, p = 0.018, respectively), and the c-reactive protein pre-procedure and the c-reactive protein post-procedure were significantly lower in group 2 versus group 1 (U = -2.969, p = 0.003, and U = -2.674, p = 0.007, respectively). CONCLUSIONS: Our study showed a lower incidence rate of large bore arterial access complications as hematoma, a shorter procedure time, and a shorter hospital stay with percutaneous closure devices compared to surgical cutdown.

18.
J Trace Elem Med Biol ; 79: 127256, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37442019

RESUMO

BACKGROUND: Lead exposure results in a terrible rise in heat shock protein levels. OBJECTIVE: This research was conducted to look at the effects of lead poisoning on heat shock response, oxidative stress, and inflammatory markers in albino rats, as well as the power of selenium and vitamin E to resist lead toxic effects. METHODS: Eight groups of albino rats are used. Each group contained six rats where the first group represented the negative control, and the other groups were treated with olive oil, vitamin E, selenium, lead, (vitamin E + lead), (selenium + lead), and (vitamin E + selenium + lead). All the treatments lasted for 28 days. Then, the mRNA expression of interested heat shock proteins (HSP90, HSP70, and HSP60) was assessed. For oxidative stress disruption, we investigated nitric oxide (NO) and malondialdehyde (MDA) content, and enzymatic and non-enzymatic antioxidants activity respectively in rat livers. RESULTS: our results revealed the synergetic protective effect of the combination of two antioxidants (vitamin E and selenium) against lead poising. This was clear in regulating HSPs expression, inflammatory markers, glucose, lipid profile, liver functions, and antioxidant enzymes more than the treatment with one antioxidant. CONCLUSION: Pb is a toxic material that can induce HSPs and inflammatory markers expression. Selenium and vitamin E can give excellent effects in ameliorating Pb toxicity when used together.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Selênio , Ratos , Animais , Selênio/farmacologia , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Vitamina E/farmacologia , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/farmacologia , NF-kappa B/metabolismo , Chumbo/toxicidade , RNA Mensageiro/genética , Estresse Oxidativo , Acetatos/farmacologia
19.
Sci Rep ; 13(1): 7321, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147356

RESUMO

Many chemotherapeutic drugs cause adverse pulmonary reactions leading to severe pulmonary disease. Though methotrexate (MTX) is used for the treatment of cancer and other diseases, it is highly toxic with multiple adverse effects including pulmonary toxicity. Essential oils represent an open frontier for pharmaceutical sciences due to their wide range of pharmacological properties. Pumpkin seeds oil (PSO) was used to investigate its ability to alleviate methotrexate-induced lung toxicity in rats. Lung tissue from MTX-treated group revealed a decrease in malondialdehyde, glutathione, and nitric oxide accompanied by a marked inhibition in cholinesterase activity, and enhanced catalase activity, tumor necrosis factor-α, interleukin-6 and vascular endothelial growth factor levels. Analysis of PSO revealed that the oil was rich in hexadecanoic acid, decane methyl esters, squalene, polydecane, docosane, and other derivatives. Administration of PSO ameliorated the oxidant/antioxidant and proinflammatory changes induced by MTX in the lung tissue. Histological examinations confirmed the potency of PSO in reducing the histopathological alterations induced by MTX. Immunohistochemical analysis showed decreased nuclear factor-kappa B and caspase 3 expression after PSO. The present data indicated the protective efficiency of PSO against MTX-induced lung injury by decreasing oxidative damage, inflammation and apoptosis and could thus be recommended as an adjuvant therapy.


Assuntos
Cucurbita , Metotrexato , Ratos , Animais , Metotrexato/toxicidade , Ratos Wistar , Fator A de Crescimento do Endotélio Vascular/farmacologia , Antioxidantes/farmacologia , Óleos de Plantas/farmacologia , Óleos de Plantas/uso terapêutico , Estresse Oxidativo , Pulmão
20.
Front Cell Neurosci ; 17: 1093199, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36874210

RESUMO

Introduction: Bifurcation analysis allows the examination of steady-state, non-linear dynamics of neurons and their effects on cell firing, yet its usage in neuroscience is limited to single-compartment models of highly reduced states. This is primarily due to the difficulty in developing high-fidelity neuronal models with 3D anatomy and multiple ion channels in XPPAUT, the primary bifurcation analysis software in neuroscience. Methods: To facilitate bifurcation analysis of high-fidelity neuronal models under normal and disease conditions, we developed a multi-compartment model of a spinal motoneuron (MN) in XPPAUT and verified its firing accuracy against its original experimental data and against an anatomically detailed cell model that incorporates known MN non-linear firing mechanisms. We used the new model in XPPAUT to study the effects of somatic and dendritic ion channels on the MN bifurcation diagram under normal conditions and after amyotrophic lateral sclerosis (ALS) cellular changes. Results: Our results show that somatic small-conductance Ca2+-activated K (SK) channels and dendritic L-type Ca2+ channels have the strongest effects on the bifurcation diagram of MNs under normal conditions. Specifically, somatic SK channels extend the limit cycles and generate a subcritical Hopf bifurcation node in the V-I bifurcation diagram of the MN to replace a supercritical node Hopf node, whereas L-type Ca2+ channels shift the limit cycles to negative currents. In ALS, our results show that dendritic enlargement has opposing effects on MN excitability, has a greater overall impact than somatic enlargement, and dendritic overbranching offsets the dendritic enlargement hyperexcitability effects. Discussion: Together, the new multi-compartment model developed in XPPAUT facilitates studying neuronal excitability in health and disease using bifurcation analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA