Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 31(14): 4106-12, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25831228

RESUMO

Ultrathin gold nanowires (NWs) dispersed in hexane were prepared by chemical reduction of HAuCl4 in oleylamine, along with nanospheres (NSs), side products of the reaction. X-ray photoelectron spectroscopy and small-angle X-ray scattering evidenced a stabilization of these nano-objects by oleylammonium chloride surfactants. The directed assembly of these nano-objects on surfaces was performed by atomic force microscopy (AFM) nanoxerography in a few seconds. Selective assembly of gold NWs only occurred on positively charged patterns, while NSs assembled more specifically on the negatively charged ones. This sorting suggests that the strong electric field generated by the charge patterns induced a negative effective charge on the gold NWs and a weak positive effective charge on the NSs. Such difference could be explained by the ion organization at the colloid surface, monolayered in the case of NWs, and bilayered in the case of NSs. By adjusting the design of the positive patterns and the experimental conditions of development, single gold nanowires were successfully assembled by AFM nanoxerography on predefined sites of surfaces without damaging them, opening the way for future electrical and mechanical characterizations.

2.
Nanoscale ; 7(5): 2009-22, 2015 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-25553777

RESUMO

Surface-enhanced Raman scattering (SERS) and surface-enhanced fluorescence (SEF) from individual plasmonic oligomers are investigated by confocal Raman micro-spectroscopy and time-resolved fluorescence microscopy coupled to steady state micro-spectroscopy. The nanoparticle (NP) oligomers are made of either ligand protected Au or Au@SiO2 core-shell colloidal NPs, which were assembled into ordered arrays by atomic force microscopy (AFM) nanoxerography. A strong dependence of the SERS emission on the polarization of incident light relative to the specific geometry of the plasmonic oligomer was observed. The SEF studies, performed on a large collection of NP oligomers of various known configurations showed interesting fluorophore decay rate modification and red-shift of the emission spectra. The experimental results are analyzed theoretically by employing finite-difference time-domain (FDTD) simulations on equivalent realistic structures, within the local density of optical states (LDOS) framework. The presented results, together with the proven potential of the LDOS approach as a useful common tool for analyzing both SERS and SEF effects further the general understanding of plasmon-related phenomena in nanoparticle oligomers.

3.
J Phys Chem Lett ; 5(17): 2988-93, 2014 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26278248

RESUMO

The dynamics of dielectrophoretic-force-directed assembly of polarizable colloidal upconverting ß-NaYF4 nanocrystals into tunable multilayers on charge micropatterns written by atomic force microscopy is investigated. Multilayered nanocrystal assembly by this nanoxerography process occurs in two phases. During the first phase typically lasting a few minutes, the nanocrystal assemblies grow up to a maximum thickness under the influence of strong dielectrophoretic forces exerted by the charge patterns. Subsequently, the nanocrystals start to diffuse back into the solvent, leaving a single layer attached to the charge patterns. A theoretical model based on the Fokker-Planck equation is formulated to describe this dynamics involving an interplay of diffusive and dielectrophoretic forces. Being in good agreement with the experimental results, this approach may be reliably extended to simulate the directed assembly of other types of polarizable colloids from liquid phase by nanoxerography.

4.
Nanoscale ; 5(20): 9587-92, 2013 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-24056843

RESUMO

Formation of 3D close-packed assemblies of upconverting NaYF4 colloidal nanocrystals (NCs) on surfaces, by Atomic Force Microscopy (AFM) nanoxerography is presented. The surface potential of the charge patterns, the NC concentration, the polarizability of the NCs and the polarity of the dispersing solvent are identified as the key parameters controlling the assembly of NaYF4 NCs into micropatterns of the desired 3D architecture. This insight allowed us to fabricate micrometer sized Quick Response (QR) codes encoded in terms of upconversion luminescence intensity or color. Topographically hidden messages could also be readily incorporated within these microtags. This work demonstrates that AFM nanoxerography has enormous potential for generating high-security anti-counterfeiting microtags.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA