Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Clin Chim Acta ; 564: 119923, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39153652

RESUMO

Breast cancer continues to be a significant contributor to global cancer deaths, particularly among women. This highlights the critical role of early detection and treatment in boosting survival rates. While conventional diagnostic methods like mammograms, biopsies, ultrasounds, and MRIs are valuable tools, limitations exist in terms of cost, invasiveness, and the requirement for specialized equipment and trained personnel. Recent shifts towards biosensor technologies offer a promising alternative for monitoring biological processes and providing accurate health diagnostics in a cost-effective, non-invasive manner. These biosensors are particularly advantageous for early detection of primary tumors, metastases, and recurrent diseases, contributing to more effective breast cancer management. The integration of biosensor technology into medical devices has led to the development of low-cost, adaptable, and efficient diagnostic tools. In this framework, electrochemical screening platforms have garnered significant attention due to their selectivity, affordability, and ease of result interpretation. The current review discusses various breast cancer biomarkers and the potential of electrochemical biosensors to revolutionize early cancer detection, making provision for new diagnostic platforms and personalized healthcare solutions.


Assuntos
Técnicas Biossensoriais , Neoplasias da Mama , Detecção Precoce de Câncer , Técnicas Eletroquímicas , Humanos , Técnicas Biossensoriais/métodos , Neoplasias da Mama/diagnóstico , Detecção Precoce de Câncer/métodos , Feminino , Biomarcadores Tumorais/análise
2.
Clin Chim Acta ; 564: 119946, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39214394

RESUMO

Ovarian cancer, a prevalent and deadly cancer among women, presents a significant challenge for early detection due to its heterogeneous nature. MicroRNAs, short non-coding regulatory RNA fragments, play a role in various cellular processes. Aberrant expression of these microRNAs has been observed in the carcinogenesis-related processes of many cancer types. Numerous studies highlight the critical role of microRNAs in the initiation and progression of ovarian cancer. Given their clinical importance and predictive value, there has been considerable interest in developing simple, prompt, and sensitive miRNA biosensor strategies. Among these, electrochemical sensors have demonstrated advantageous characteristics such as simplicity, sensitivity, low cost, and scalability. These microRNA-based electrochemical biosensors are valuable tools for early detection and point-of-care applications. This article discusses the potential role of microRNAs in ovarian cancer and recent advances in the development of electrochemical biosensors for miRNA detection in ovarian cancer samples.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , MicroRNAs , Neoplasias Ovarianas , Humanos , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/genética , Feminino , Técnicas Biossensoriais/métodos , MicroRNAs/análise , MicroRNAs/genética
3.
Clin Chim Acta ; 565: 119976, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39321910

RESUMO

Thrombin, a key factor in the coagulation cascade, is a valuable biomarker of great importance for the prognosis, diagnosis, and monitoring of various diseases, including cancer and heart disease. Due to the increasing attention to the development of point-of-care testing (POCT) options, various types of biosensors have been invented to enhance the accuracy and speed of detection of important biomarkers such as thrombin. Implementation of aptamers in biosensors (aptasensors) improves the target recognition capacity due to the high-affinity binding nature of aptamers. Herein, this review presents recent studies of aptasensors for thrombin detection based on different detection mechanisms encompassing optical biosensors, surface-enhanced Raman spectroscopy (SERS), electrochemical detection, piezoelectric detection, and lateral flow assay.

4.
Funct Integr Genomics ; 24(5): 165, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39294422

RESUMO

Cardiovascular diseases (CVDs) a major contributor to global mortality rates, with a steadily rising prevalence observed across the world. Understanding the molecular mechanisms that underlie the signaling pathways implicated in the pathogenesis of CVDs represents a salient and advantageous avenue toward the development of precision and targeted therapeutics. A recent development in CVDs research is the discovery of long non-coding RNAs (lncRNAs), which are now understood to have crucial roles in the onset and development of several pathophysiological processes. The distinct expression patterns exhibited by lncRNAs in various CVDs contexts, present a significant opportunity for their utilization as both biomarkers and targets for therapeutic intervention. Among the various identified lncRNAs, HOX antisense intergenic RNA (HOTAIR) functions as signaling molecules that are significantly implicated in the pathogenesis of cardiovascular disorders in response to risk factors. HOTAIR has been observed to circulate within the bloodstream and possesses an integral epigenetic regulatory function in the transcriptional pathways of many diseases. Recent studies have suggested that HOTAIR offers promise as a biomarker for the detection and treatment of CVDs. The investigation on HOTAIR's role in CVDs, however, is still in its early phases. The goal of the current study is to give a thorough overview of recent developments in the field of analyzing the molecular mechanism of HOTAIR in controlling the pathophysiological processes of CVDs as well as its possible therapeutic uses.


Assuntos
Doenças Cardiovasculares , RNA Longo não Codificante , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Humanos , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Biomarcadores/metabolismo , Animais , Epigênese Genética , Transdução de Sinais
5.
Clin Chim Acta ; 562: 119871, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009333

RESUMO

Leukemia, a type of blood cancer marked by an abnormal increase in white blood cells, poses a significant challenge to healthcare. The key to successful treatment lies in early detection. However, traditional methods often fall short. This review investigates the potential of electrochemical biosensors for a more accurate and earlier diagnosis of leukemia. Electrochemical biosensors are compact devices that transform biological interactions into electrical signals. Their small size, ease of use, and minimal sample requirements make them perfectly suited for point-of-care applications. Their remarkable sensitivity and specificity enable the detection of subtle biomolecular changes associated with leukemia, which is crucial for early disease detection. This review delves into studies that have utilized these biosensors to identify various types of leukemia. It examines the roles of electrodes, biorecognition elements, and signal transduction mechanisms. The discussion includes the integration of nanomaterials such as gold nanoparticles and nitrogen-doped graphene into biosensor design. These materials boost sensitivity, enhance signal amplification, and facilitate multi-analyte detection, thereby providing a more holistic view of the disease. Beyond technical advancements, the review underscores the practical benefits of these biosensors. Their portability makes them a promising tool for resource-constrained settings, enabling swift diagnosis in remote areas or at a patient's bedside. The potential for monitoring treatment effectiveness and detecting minimal residual disease to prevent relapse is also explored. This review emphasizes the transformative potential of electrochemical biosensors in combating leukemia. By facilitating earlier and more accurate diagnosis, these biosensors stand to revolutionize patient care and enhance treatment outcomes.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Leucemia , Humanos , Técnicas Biossensoriais/métodos , Leucemia/diagnóstico , Detecção Precoce de Câncer/métodos
6.
Clin Chim Acta ; 561: 119762, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38844018

RESUMO

Diabetic nephropathy (DN), a significant consequence of diabetes, is associated with adverse cardiovascular and renal disease as well as mortality. Although microalbuminuria is considered the best non-invasive marker for DN, better predictive markers are needed of sufficient sensitivity and specificity to detect disease in general and in early disease specifically. Even prior to appearance of microalbuminuria, urinary biomarkers increase in diabetics and can serve as accurate nephropathy biomarkers even in normoalbuminuria. In this review, a number of novel urine biomarkers including those reflecting kidney damage caused by glomerular/podocyte damage, tubular damage, oxidative stress, inflammation, and intrarenal renin-angiotensin system activation are discussed. Our review also includes emerging biomarkers such as urinary microRNAs. These short noncoding miRNAs regulate gene expression and could be utilized to identify potential novel biomarkers in DN development and progression. .


Assuntos
Biomarcadores , Nefropatias Diabéticas , Humanos , Nefropatias Diabéticas/urina , Nefropatias Diabéticas/diagnóstico , Biomarcadores/urina , Estresse Oxidativo , MicroRNAs/urina
7.
J Appl Genet ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874855

RESUMO

Male infertility is a significant reproductive issue affecting a considerable number of couples worldwide. While there are various causes of male infertility, genetic factors play a crucial role in its development. We focused on identifying and analyzing the high-risk nsSNPs in DNAH1 and DNAH17 genes, which encode proteins involved in sperm motility. A total of 20 nsSNPs for DNAH1 and 10 nsSNPs for DNAH17 were analyzed using various bioinformatics tools including SIFT, PolyPhen-2, CADD, PhD-SNPg, VEST-4, and MutPred2. As a result, V1287G, L2071R, R2356W, R3169C, R3229C, E3284K, R4096L, R4133C, and A4174T in DNAH1 gene and C1803Y, C1829Y, R1903C, and L3595P in DNAH17 gene were identified as high-risk nsSNPs. These nsSNPs were predicted to decrease protein stability, and almost all were found in highly conserved amino acid positions. Additionally, 4 nsSNPs were observed to alter post-translational modification status. Furthermore, the interaction network analysis revealed that DNAH1 and DNAH17 interact with DNAH2, DNAH3, DNAH5, DNAH7, DNAH8, DNAI2, DNAL1, CFAP70, DNAI3, DNAI4, ODAD1, and DNAI7, demonstrating the importance of DNAH1 and DNAH17 proteins in the overall functioning of the sperm motility machinery. Taken together, these findings revealed the detrimental effects of identified high-risk nsSNPs on protein structure and function and highlighted their potential relevance to male infertility. Further studies are warranted to validate these findings and to elucidate the underlying mechanisms.

8.
Recent Pat Biotechnol ; 18(4): 332-343, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38817010

RESUMO

BACKGROUND: Cancer is a leading cause of death and a significant public health issue worldwide. Standard treatment methods such as chemotherapy, radiotherapy, and surgery are only sometimes effective. Therefore, new therapeutic approaches are needed for cancer treatment. Sea anemone actinoporins are pore-forming toxins (PFTs) with membranolytic activities. RTX-A is a type of PFT that interacts with membrane phospholipids, resulting in pore formation. The synthesis of recombinant proteins in a secretory form has several advantages, including protein solubility and easy purification. In this study, we aimed to discover suitable signal peptides for producing RTX-A in Bacillus subtilis in a secretory form. METHODS: Signal peptides were selected from the Signal Peptide Web Server. The probability and secretion pathways of the selected signal peptides were evaluated using the SignalP server. ProtParam and Protein-sol were used to predict the physico-chemical properties and solubility. AlgPred was used to predict the allergenicity of RTX-A linked to suitable signal peptides. Non-allergenic, stable, and soluble signal peptides fused to proteins were chosen, and their secondary and tertiary structures were predicted using GOR IV and I-TASSER, respectively. The PROCHECK server performed the validation of 3D structures. RESULTS: According to bioinformatics analysis, the fusion forms of OSMY_ECOLI and MALE_ECOLI linked to RTX-A were identified as suitable signal peptides. The final proteins with signal peptides were stable, soluble, and non-allergenic for the human body. Moreover, they had appropriate secondary and tertiary structures. CONCLUSION: The signal above peptides appears ideal for rationalizing secretory and soluble RTX-A. Therefore, the signal peptides found in this study should be further investigated through experimental researches and patents.


Assuntos
Antineoplásicos , Bacillus subtilis , Simulação por Computador , Animais , Humanos , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , Bacillus subtilis/metabolismo , Biologia Computacional/métodos , Patentes como Assunto , Sinais Direcionadores de Proteínas , Anêmonas-do-Mar/química , Solubilidade , Venenos de Cnidários/química , Venenos de Cnidários/farmacologia
9.
Clin Chim Acta ; 557: 117878, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38493942

RESUMO

Glioblastoma (GBM) is a highly aggressive and life-threatening neurological malignancy of predominant astrocyte origin. This type of neoplasm can develop in either the brain or the spine and is also known as glioblastoma multiforme. Although current diagnostic methods such as magnetic resonance imaging (MRI) and positron emission tomography (PET) facilitate tumor location, these approaches are unable to assess disease severity. Furthermore, interpretation of imaging studies requires significant expertise which can have substantial inter-observer variability, thus challenging diagnosis and potentially delaying treatment. In contrast, biosensing systems offer a promising alternative to these traditional approaches. These technologies can continuously monitor specific molecules, providing valuable real-time data on treatment response, and could significantly improve patient outcomes. Among various types of biosensors, electrochemical systems are preferred over other types, as they do not require expensive or complex equipment or procedures and can be made with readily available materials and methods. Moreover, electrochemical biosensors can detect very small amounts of analytes with high accuracy and specificity by using various signal amplification strategies and recognition elements. Considering the advantages of electrochemical biosensors compared to other biosensing methods, we aim to highlight the potential application(s) of these sensors for GBM theranostics. The review's innovative insights are expected to antecede the development of novel biosensors and associated diagnostic platforms, ultimately restructuring GBM detection strategies.


Assuntos
Técnicas Biossensoriais , Glioblastoma , Técnicas Biossensoriais/métodos , Detecção Precoce de Câncer , Técnicas Eletroquímicas , Glioblastoma/diagnóstico por imagem , Imageamento por Ressonância Magnética
10.
J Appl Genet ; 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38459407

RESUMO

Epidermolysis bullosa (EB) is a group of rare genetic skin fragility disorders, which are hereditary. These disorders are associated with mutations in at least 16 genes that encode components of the epidermal adhesion complex. Currently, there are no effective treatments for this disorder. All current treatment approaches focus on topical treatments to prevent complications and infections. In recent years, significant progress has been achieved in the treatment of the severe genetic skin blistering condition known as EB through preclinical and clinical advancements. Promising developments have emerged in the areas of protein and cell therapies, such as allogeneic stem cell transplantation; in addition, RNA-based therapies and gene therapy approaches have also become a reality. Stem cells obtained from embryonic or adult tissues, including the skin, are undifferentiated cells with the ability to generate, maintain, and replace fully developed cells and tissues. Recent advancements in preclinical and clinical research have significantly enhanced stem cell therapy, presenting a promising treatment option for various diseases that are not effectively addressed by current medical treatments. Different types of stem cells such as primarily hematopoietic and mesenchymal, obtained from the patient or from a donor, have been utilized to treat severe forms of diseases, each with some beneficial effects. In addition, extensive research has shown that gene transfer methods targeting allogeneic and autologous epidermal stem cells to replace or correct the defective gene are promising. These methods can regenerate and restore the adhesion of primary keratinocytes in EB patients. The long-term treatment of skin lesions in a small number of patients has shown promising results through the transplantation of skin grafts produced from gene-corrected autologous epidermal stem cells. This article attempts to summarize the current situation, potential development prospects, and some of the challenges related to the cell therapy approach for EB treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA