Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Inorg Biochem ; 225: 111604, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34571402

RESUMO

The kynurenine pathway is the major route of tryptophan metabolism. The first step of this pathway is catalysed by one of two heme-dependent dioxygenase enzymes - tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO) - leading initially to the formation of N-formylkynurenine (NFK). In this paper, we present a crystal structure of a bacterial TDO from X. campestris in complex with l-kynurenine, the hydrolysed product of NFK. l-kynurenine is bound at the active site in a similar location to the substrate (l-Trp). Hydrogen bonding interactions with Arg117 and the heme 7-propionate anchor the l-kynurenine molecule into the pocket. A mechanism for the hydrolysis of NFK in the active site is presented.


Assuntos
Cinurenina/metabolismo , Triptofano Oxigenase/metabolismo , Ligação de Hidrogênio , Ferro/química , Cinurenina/química , Oxirredução , Ligação Proteica , Estereoisomerismo , Triptofano/química , Triptofano Oxigenase/química , Xanthomonas campestris/enzimologia
2.
Nat Commun ; 8: 15827, 2017 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-28604669

RESUMO

Kynurenine-3-monooxygenase (KMO) is a key FAD-dependent enzyme of tryptophan metabolism. In animal models, KMO inhibition has shown benefit in neurodegenerative diseases such as Huntington's and Alzheimer's. Most recently it has been identified as a target for acute pancreatitis multiple organ dysfunction syndrome (AP-MODS); a devastating inflammatory condition with a mortality rate in excess of 20%. Here we report and dissect the molecular mechanism of action of three classes of KMO inhibitors with differentiated binding modes and kinetics. Two novel inhibitor classes trap the catalytic flavin in a previously unobserved tilting conformation. This correlates with picomolar affinities, increased residence times and an absence of the peroxide production seen with previous substrate site inhibitors. These structural and mechanistic insights culminated in GSK065(C1) and GSK366(C2), molecules suitable for preclinical evaluation. Moreover, revising the repertoire of flavin dynamics in this enzyme class offers exciting new opportunities for inhibitor design.


Assuntos
Inibidores Enzimáticos/farmacologia , Quinurenina 3-Mono-Oxigenase/antagonistas & inibidores , Insuficiência de Múltiplos Órgãos/metabolismo , Pancreatite/metabolismo , Animais , Inibidores Enzimáticos/química , Escherichia coli/genética , Humanos , Peróxido de Hidrogênio/metabolismo , Quinurenina 3-Mono-Oxigenase/química , Quinurenina 3-Mono-Oxigenase/metabolismo , Modelos Moleculares , Domínios Proteicos , Células Sf9
3.
J Med Chem ; 60(8): 3383-3404, 2017 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-28398044

RESUMO

Recently, we reported a novel role for KMO in the pathogenesis of acute pancreatitis (AP). A number of inhibitors of kynurenine 3-monooxygenase (KMO) have previously been described as potential treatments for neurodegenerative conditions and particularly for Huntington's disease. However, the inhibitors reported to date have insufficient aqueous solubility relative to their cellular potency to be compatible with the intravenous (iv) dosing route required in AP. We have identified and optimized a novel series of high affinity KMO inhibitors with favorable physicochemical properties. The leading example is exquisitely selective, has low clearance in two species, prevents lung and kidney damage in a rat model of acute pancreatitis, and is progressing into preclinical development.


Assuntos
Inibidores Enzimáticos/farmacologia , Quinurenina 3-Mono-Oxigenase/antagonistas & inibidores , Pancreatite/tratamento farmacológico , Doença Aguda , Animais , Inibidores Enzimáticos/uso terapêutico , Humanos , Ratos
5.
J Enzyme Inhib Med Chem ; 31(sup1): 70-78, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27096472

RESUMO

Tryptophan 2,3-dioxygenase (TDO) is a cytosolic protein with a proven immunomodulatory function that promotes tumoral immune resistance and proliferation. Despite the interest in TDO as a therapeutic target in cancer treatment, the number of biologically useful inhibitors is limited. Herein, we report isatin derivatives as a new class of TDO inhibitors. Through structure-activity relationships and molecular docking studies, we optimized the inhibition potency of isatin derivatives by >130-fold and elucidated the mechanistic details that control their mode of action. Hydrogen bond interactions between the compound and key active site residues of TDO, freedom upon rotation of the C3 chemical moiety and the presence of chlorines in the benzene ring of the compound comprise the properties that an isatin-based inhibitor requires to effectively inhibit the enzymatic activity of TDO.


Assuntos
Inibidores Enzimáticos/farmacologia , Isatina/análogos & derivados , Triptofano Oxigenase/antagonistas & inibidores , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Isatina/síntese química , Isatina/química , Isatina/farmacologia , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Triptofano Oxigenase/isolamento & purificação , Triptofano Oxigenase/metabolismo
6.
Nat Med ; 22(2): 202-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26752518

RESUMO

Acute pancreatitis (AP) is a common and devastating inflammatory condition of the pancreas that is considered to be a paradigm of sterile inflammation leading to systemic multiple organ dysfunction syndrome (MODS) and death. Acute mortality from AP-MODS exceeds 20% (ref. 3), and the lifespans of those who survive the initial episode are typically shorter than those of the general population. There are no specific therapies available to protect individuals from AP-MODS. Here we show that kynurenine-3-monooxygenase (KMO), a key enzyme of tryptophan metabolism, is central to the pathogenesis of AP-MODS. We created a mouse strain that is deficient for Kmo (encoding KMO) and that has a robust biochemical phenotype that protects against extrapancreatic tissue injury to the lung, kidney and liver in experimental AP-MODS. A medicinal chemistry strategy based on modifications of the kynurenine substrate led to the discovery of the oxazolidinone GSK180 as a potent and specific inhibitor of KMO. The binding mode of the inhibitor in the active site was confirmed by X-ray co-crystallography at 3.2 Å resolution. Treatment with GSK180 resulted in rapid changes in the levels of kynurenine pathway metabolites in vivo, and it afforded therapeutic protection against MODS in a rat model of AP. Our findings establish KMO inhibition as a novel therapeutic strategy in the treatment of AP-MODS, and they open up a new area for drug discovery in critical illness.


Assuntos
Benzoxazóis/farmacologia , Quinurenina 3-Mono-Oxigenase/antagonistas & inibidores , Insuficiência de Múltiplos Órgãos/genética , Oxazolidinonas/farmacologia , Pancreatite/genética , Propionatos/farmacologia , RNA Mensageiro/metabolismo , Doença Aguda , Animais , Cromatografia Líquida , Cristalografia por Raios X , Modelos Animais de Doenças , Células HEK293 , Hepatócitos/metabolismo , Humanos , Técnicas In Vitro , Rim/metabolismo , Rim/patologia , Quinurenina 3-Mono-Oxigenase/genética , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Knockout , Insuficiência de Múltiplos Órgãos/etiologia , Insuficiência de Múltiplos Órgãos/patologia , Pâncreas/metabolismo , Pâncreas/patologia , Pancreatite/complicações , Pancreatite/patologia , Ratos , Espectrometria de Massas em Tandem , Triptofano/metabolismo
7.
Amino Acids ; 46(9): 2155-63, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24875753

RESUMO

Indoleamine 2,3-dioxygenase-2 (IDO2) is one of three enzymes (alongside tryptophan 2,3-dioxygenase and indoleamine 2,3-dioxygenase (IDO1)) that catalyse dioxygenation of L-tryptophan as the first step in the kynurenine pathway. Despite the reported expression of IDO2 in tumours, some fundamental characteristics of the enzyme, such as substrate specificity and inhibition selectivity, are still to be clearly defined. In this study, we report the kinetic and inhibition characteristics of recombinant human IDO2. Choosing from a series of likely IDO2 substrates, we screened 54 tryptophan derivatives and tryptophan-like molecules, and characterised the 8 with which the enzyme was most active. Specificity of IDO2 for the two isomers of 1-methyltryptophan was also evaluated and the findings compared with those obtained in other studies on IDO2 and IDO1. Interestingly, IDO2 demonstrates behaviour distinct from that of IDO1 in terms of substrate specificity and affinity, such that we have identified tryptophan derivatives that are mutually exclusive as substrates for IDO1 and IDO2. Our results support the idea that the antitumour activity of 1-Me-D-Trp is unlikely to be related with competitive inhibition of IDO2, and also imply that there are subtle differences in active site structure in the two enzymes that may be exploited in the development of specific inhibitors of these enzymes, a route which may prove important in defining their role(s) in cancer.


Assuntos
Indolamina-Pirrol 2,3,-Dioxigenase/química , Triptofano/análogos & derivados , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Especificidade por Substrato/fisiologia , Triptofano/química
8.
Biochem Biophys Res Commun ; 443(1): 28-31, 2014 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-24269239

RESUMO

The involvement of tryptophan 2,3-dioxygenase (TDO) in cancer biology has recently been described, with the enzyme playing an immunomodulatory role, suppressing antitumour immune responses and promoting tumour cell survival and proliferation. This finding reinforces the need for specific inhibitors of TDO that may potentially be developed for therapeutic use. In this work we have screened ~2800 compounds from the library of the National Cancer Institute USA and identified seven potent inhibitors of TDO with inhibition constants in the nanomolar or low micromolar range. All seven have antitumour properties, killing various cancer cell lines. For comparison, the inhibition potencies of these compounds were tested against IDO and their inhibition constants are reported. Interestingly, this work reveals that NSC 36398 (dihydroquercetin, taxifolin), with an in vitro inhibition constant of ~16 µM, is the first TDO-selective inhibitor reported.


Assuntos
Antineoplásicos/farmacologia , Catecóis/farmacologia , Cromonas/farmacologia , Quercetina/análogos & derivados , Triptofano Oxigenase/antagonistas & inibidores , Linhagem Celular Tumoral , Humanos , Quercetina/farmacologia
9.
FEBS J ; 279(24): 4501-9, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23083473

RESUMO

Indoleamine 2,3-dioxygenase and tryptophan 2,3-dioxygenase catalyze the O(2) -dependent oxidation of l-tryptophan to N-formylkynurenine. Both are heme-containing enzymes, with a proximal histidine ligand, as found in the globins and peroxidases. From the structural information available so far, the distal heme pockets of these enzymes can contain a histidine residue (in tryptophan 2,3-dioxygenases), an arginine residue and numerous hydrophobic residues that line the pocket. We have examined the functional role of each of these residues in both human indoleamine 2,3-dioxygenase and human tryptophan 2,3-dioxygenase. We found that the distal histidine does not play an essential catalytic role, although substrate binding can be affected by removing the distal arginine and reducing the hydrophobic nature of the binding pocket. We collate the information obtained in the present study with that reported in the available literature to draw comparisons across the family and to provide a more coherent picture of how the heme pocket is optimized for tryptophan binding.


Assuntos
Hemeproteínas/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Triptofano Oxigenase/metabolismo , Triptofano/metabolismo , Domínio Catalítico , Oxirredução , Ligação Proteica , Especificidade por Substrato
10.
Curr Opin Chem Biol ; 16(1-2): 60-6, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22356841

RESUMO

Heme iron is often used in biology for activation of oxygen. The mechanisms of oxygen activation by heme-containing monooxygenases (the cytochrome P450s) are well known, and involve formation of a Compound I species, but information on the heme-containing dioxygenase enzymes involved in tryptophan oxidation lags far behind. In this review, we gather together information emerging recently from structural, mechanistic, spectroscopic, and computational approaches on the heme dioxygenase enzymes involved in tryptophan oxidation. We explore the subtleties that differentiate various heme enzymes from each other, and use this to piece together a developing picture for oxygen activation in this particular class of heme-containing dioxygenases.


Assuntos
Dioxigenases/metabolismo , Heme/metabolismo , Biocatálise , Dioxigenases/química , Dioxigenases/classificação , Heme/química , Humanos , Oxirredução , Especificidade por Substrato , Triptofano/química , Triptofano/metabolismo
11.
J Am Chem Soc ; 134(6): 3034-41, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22299628

RESUMO

Indoleamine 2,3-dioxygenase catalyzes the O(2)-dependent oxidation of L-tryptophan (L-Trp) to N-formylkynurenine (NFK) as part of the kynurenine pathway. Inhibition of enzyme activity at high L-Trp concentrations was first noted more than 30 years ago, but the mechanism of inhibition has not been established. Using a combination of kinetic and reduction potential measurements, we present evidence showing that inhibition of enzyme activity in human indoleamine 2,3-dioxygenase (hIDO) and a number of site-directed variants during turnover with L-tryptophan (L-Trp) can be accounted for by the sequential, ordered binding of O(2) and L-Trp. Analysis of the data shows that at low concentrations of L-Trp, O(2) binds first followed by the binding of L-Trp; at higher concentrations of L-Trp, the order of binding is reversed. In addition, we show that the heme reduction potential (E(m)(0)) has a regulatory role in controlling the overall rate of catalysis (and hence the extent of inhibition) because there is a quantifiable correlation between E(m)(0) (that increases in the presence of L-Trp) and the rate constant for O(2) binding. This means that the initial formation of ferric superoxide (Fe(3+)-O(2)(•-)) from Fe(2+)-O(2) becomes thermodynamically less favorable as substrate binds, and we propose that it is the slowing down of this oxidation step at higher concentrations of substrate that is the origin of the inhibition. In contrast, we show that regeneration of the ferrous enzyme (and formation of NFK) in the final step of the mechanism, which formally requires reduction of the heme, is facilitated by the higher reduction potential in the substrate-bound enzyme and the two constants (k(cat) and E(m)(0)) are shown also to be correlated. Thus, the overall catalytic activity is balanced between the equal and opposite dependencies of the initial and final steps of the mechanism on the heme reduction potential. This tuning of the reduction potential provides a simple mechanism for regulation of the reactivity, which may be used more widely across this family of enzymes.


Assuntos
Bioquímica/métodos , Indolamina-Pirrol 2,3,-Dioxigenase/química , Catálise , Química Farmacêutica/métodos , Heme/química , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Cinética , Cinurenina/análogos & derivados , Cinurenina/química , Mutagênese Sítio-Dirigida , Oxigênio/química , Ligação Proteica , Especificidade por Substrato , Termodinâmica , Triptofano/química
12.
Biochem J ; 443(2): 505-14, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22300432

RESUMO

The vital signalling molecule NO is produced by mammalian NOS (nitric oxide synthase) enzymes in two steps. L-arginine is converted into NOHA (Nω-hydroxy-L-arginine), which is converted into NO and citrulline. Both steps are thought to proceed via similar mechanisms in which the cofactor BH4 (tetrahydrobiopterin) activates dioxygen at the haem site by electron transfer. The subsequent events are poorly understood due to the lack of stable intermediates. By analogy with cytochrome P450, a haem-iron oxo species may be formed, or direct reaction between a haem-peroxy intermediate and substrate may occur. The two steps may also occur via different mechanisms. In the present paper we analyse the two reaction steps using the G586S mutant of nNOS (neuronal NOS), which introduces an additional hydrogen bond in the active site and provides an additional proton source. In the mutant enzyme, BH4 activates dioxygen as in the wild-type enzyme, but an interesting intermediate haem species is then observed. This may be a stabilized form of the active oxygenating species. The mutant is able to perform step 2 (reaction with NOHA), but not step 1 (with L-arginine) indicating that the extra hydrogen bond enables it to discriminate between the two mono-oxygenation steps. This implies that the two steps follow different chemical mechanisms.


Assuntos
Óxido Nítrico Sintase Tipo I/metabolismo , Cristalografia por Raios X , Ferro/metabolismo , Modelos Moleculares , Mutação , Óxido Nítrico Sintase Tipo I/química , Óxido Nítrico Sintase Tipo I/genética , Oxirredução , Estrutura Terciária de Proteína
13.
J Am Chem Soc ; 133(40): 16251-7, 2011 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-21892828

RESUMO

Heme dioxygenases catalyze the oxidation of L-tryptophan to N-formylkynurenine (NFK), the first and rate-limiting step in tryptophan catabolism. Although recent progress has been made on early stages in the mechanism, there is currently no experimental data on the mechanism of product (NFK) formation. In this work, we have used mass spectrometry to examine product formation in a number of dioxygenases. In addition to NFK formation (m/z = 237), the data identify a species (m/z = 221) that is consistent with insertion of a single atom of oxygen into the substrate during O(2)-driven turnover. The fragmentation pattern for this m/z = 221 species is consistent with a cyclic amino acetal structure; independent chemical synthesis of the 3a-hydroxypyrroloindole-2-carboxylic acid compound is in agreement with this assignment. Labeling experiments with (18)O(2) confirm the origin of the oxygen atom as arising from O(2)-dependent turnover. These data suggest that the dioxygenases use a ring-opening mechanism during NFK formation, rather than Criegee or dioxetane mechanisms as previously proposed.


Assuntos
Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Cinurenina/análogos & derivados , Triptofano Oxigenase/metabolismo , Heme/metabolismo , Humanos , Cinurenina/metabolismo , Espectrometria de Massas , Oxigênio/metabolismo , Xanthomonas campestris/enzimologia
14.
Biochemistry ; 50(14): 2717-24, 2011 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-21361337

RESUMO

As members of the family of heme-dependent enzymes, the heme dioxygenases are differentiated by virtue of their ability to catalyze the oxidation of l-tryptophan to N-formylkynurenine, the first and rate-limiting step in tryptophan catabolism. In the past several years, there have been a number of important developments that have meant that established proposals for the reaction mechanism in the heme dioxygenases have required reassessment. This focused review presents a summary of these recent advances, written from a structural and mechanistic perspective. It attempts to present answers to some of the long-standing questions, to highlight as yet unresolved issues, and to explore the similarities and differences of other well-known catalytic heme enzymes such as the cytochromes P450, NO synthase, and peroxidases.


Assuntos
Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Cinurenina/análogos & derivados , Triptofano Oxigenase/metabolismo , Triptofano/metabolismo , Animais , Biocatálise , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/química , Cinurenina/química , Cinurenina/metabolismo , Modelos Moleculares , Estrutura Molecular , Estrutura Terciária de Proteína , Triptofano/química , Triptofano Oxigenase/química
15.
J Am Chem Soc ; 132(15): 5494-500, 2010 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-20353179

RESUMO

We have applied cryoreduction/EPR/ENDOR techniques to characterize the active-site structure of the ferrous-oxy complexes of human (hIDO) and Shewanella oneidensis (sIDO) indoleamine 2,3-dioxygenases, Xanthomonas campestris (XcTDO) tryptophan 2,3-dioxygenase, and the H55S variant of XcTDO in the absence and in the presence of the substrate L-Trp and a substrate analogue, L-Me-Trp. The results reveal the presence of multiple conformations of the binary ferrous-oxy species of the IDOs. In more populated conformers, most likely a water molecule is within hydrogen-bonding distance of the bound ligand, which favors protonation of a cryogenerated ferric peroxy species at 77 K. In contrast to the binary complexes, cryoreduction of all of the studied ternary [enzyme-O(2)-Trp] dioxygenase complexes generates a ferric peroxy heme species with very similar EPR and (1)H ENDOR spectra in which protonation of the basic peroxy ligand does not occur at 77 K. Parallel studies with L-Me-Trp, in which the proton of the indole nitrogen is replaced with a methyl group, eliminate the possibility that the indole NH group of the substrate acts as a hydrogen bond donor to the bound O(2), and we suggest instead that the ammonium group of the substrate hydrogen-bonds to the dioxygen ligand. The present data show that substrate binding, primarily through this H-bond, causes the bound dioxygen to adopt a new conformation, which presumably is oriented for insertion of O(2) into the C(2)-C(3) double bond of the substrate. This substrate interaction further helps control the reactivity of the heme-bound dioxygen by "shielding" it from water.


Assuntos
Indolamina-Pirrol 2,3,-Dioxigenase/química , Triptofano Oxigenase/química , Domínio Catalítico , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Compostos Ferrosos/metabolismo , Humanos , Ligação de Hidrogênio , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Oxigênio/química , Triptofano/metabolismo , Triptofano Oxigenase/metabolismo , Xanthomonas campestris/enzimologia
16.
Arch Biochem Biophys ; 493(1): 37-52, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19850002

RESUMO

There are many examples of oxidative enzymes containing both flavin and heme prosthetic groups that carry out the oxidation of their substrate. For the purpose of this article we have chosen five systems. Two of these, the L-lactate dehydrogenase flavocytochrome b(2) and cellobiose dehydrogenase, carry out the catalytic chemistry at the flavin group. In contrast, the remaining three require activation of dioxygen at the heme group in order to accomplish substrate oxidation, these being flavohemoglobin, a nitric oxide dioxygenase, and the mono-oxygenases nitric oxide synthase and flavocytochrome P450 BM3, which functions as a fatty acid hydroxylase. In the light of recent advances we will describe the structures of these enzymes, some of which share significant homology. We will also discuss their diverse and sometimes controversial catalytic mechanisms, and consider electron transfer processes between the redox cofactors in order to provide an overview of this fascinating set of enzymes.


Assuntos
Proteínas de Bactérias/metabolismo , Desidrogenases de Carboidrato/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Flavinas/metabolismo , L-Lactato Desidrogenase (Citocromo)/metabolismo , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Óxido Nítrico Sintase/metabolismo , Proteínas de Bactérias/química , Desidrogenases de Carboidrato/química , Sistema Enzimático do Citocromo P-450/química , L-Lactato Desidrogenase (Citocromo)/química , Modelos Moleculares , NADPH-Ferri-Hemoproteína Redutase/química , Óxido Nítrico Sintase/química , Conformação Proteica
17.
J Am Chem Soc ; 131(12): 4186-7, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19275153

RESUMO

Indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) are heme enzymes that catalyze the O(2)-dependent oxidation of L-tryptophan to N-formyl-kynurenine. Previous proposals for the mechanism of this reaction have suggested that deprotonation of the indole NH group, either by an active-site base or by oxygen bound to the heme iron, as the initial step. In this work, we have examined the activity of 1-Me-L-Trp with three different heme dioxygenases and their site-directed variants. We find, in contrast to previous work, that 1-Me-L-Trp is a substrate for the heme dioxygenase enzymes. These observations suggest that deprotonation of the indole N(1) is not essential for catalysis, and an alternative reaction mechanism, based on the known chemistry of indoles, is presented.


Assuntos
Química Orgânica/métodos , Dioxigenases/química , Heme/química , Catálise , Indolamina-Pirrol 2,3,-Dioxigenase/química , Indóis/química , Cinética , Cinurenina/química , Modelos Químicos , Mutagênese Sítio-Dirigida , Oxigênio/química , Prótons , Triptofano/química , Triptofano Oxigenase/química
18.
Biochem Soc Trans ; 36(Pt 6): 1120-3, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19021508

RESUMO

The haem proteins TDO (tryptophan 2,3-dioxygenase) and IDO (indoleamine 2,3-dioxygenase) are specific and powerful oxidation catalysts that insert one molecule of dioxygen into L-tryptophan in the first and rate-limiting step in the kynurenine pathway. Recent crystallographic and biochemical analyses of TDO and IDO have greatly aided our understanding of the mechanisms employed by these enzymes in the binding and activation of dioxygen and tryptophan. In the present paper, we briefly discuss the function, structure and possible catalytic mechanism of these enzymes.


Assuntos
Triptofano Oxigenase/metabolismo , Animais , Catálise , Domínio Catalítico , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/química , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Triptofano Oxigenase/química
19.
Biochem Soc Trans ; 36(Pt 5): 992-5, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18793176

RESUMO

Rhodobacter sphaeroides produces a novel cytochrome, designated as SHP (sphaeroides haem protein), that is unusual in having asparagine as a redox-labile haem ligand. The gene encoding SHP is contained within an operon that also encodes a DHC (dihaem cytochrome c) and a membrane-associated cytochrome b. DHC and SHP have been shown to have high affinity for each other at low ionic strength (Kd=0.2 microM), and DHC is able to reduce SHP very rapidly. The reduced form of the protein, SHP2+ (reduced or ferrous SHP), has high affinity for both oxygen and nitric oxide (NO). It has been shown that the oxyferrous form, SHP2+-O2 (oxygen-bound form of SHP), reacts rapidly with NO to produce nitrate, whereas SHP2+-NO (the NO-bound form of SHP) will react with superoxide with the same product formed. It is therefore possible that SHP functions physiologically as a nitric oxide dioxygenase, protecting the organism against NO poisoning, and we propose a possible mechanism for this process.


Assuntos
Hemeproteínas/metabolismo , Oxigenases/metabolismo , Rhodobacter sphaeroides/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Grupo dos Citocromos c/química , Grupo dos Citocromos c/metabolismo , Hemeproteínas/química , Modelos Moleculares , Estrutura Molecular , Nitratos/metabolismo , Óxido Nítrico/metabolismo , Oxigênio/metabolismo , Oxigenases/química , Estrutura Terciária de Proteína , Rhodobacter sphaeroides/enzimologia , Superóxidos/metabolismo
20.
Biochemistry ; 47(40): 10677-84, 2008 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-18783250

RESUMO

Tryptophan 2,3-dioxygenase (TDO) from Xanthomonas campestris is a highly specific heme-containing enzyme from a small family of homologous enzymes, which includes indoleamine 2,3-dioxygenase (IDO). The structure of wild type (WT TDO) in the catalytically active, ferrous (Fe (2+)) form and in complex with its substrate l-tryptophan ( l-Trp) was recently reported [Forouhar et al. (2007) Proc. Natl. Acad. Sci. U.S.A. 104, 473-478] and revealed that histidine 55 hydrogen bonds to l-Trp, precisely positioning it in the active site and implicating it as a possible active site base. In this study the substitution of the active site residue histidine 55 by alanine and serine (H55A and H55S) provides insight into the molecular mechanism used by the enzyme to control substrate binding. We report the crystal structure of the H55A and H55S mutant forms at 2.15 and 1.90 A resolution, respectively, in binary complexes with l-Trp. These structural data, in conjunction with potentiometric and kinetic studies on both mutants, reveal that histidine 55 is not essential for turnover but greatly disfavors the mechanistically unproductive binding of l-Trp to the oxidized enzyme allowing control of catalysis. This is demonstrated by the difference in the K d values for l-Trp binding to the two oxidation states of wild-type TDO (3.8 mM oxidized, 4.1 microM reduced), H55A TDO (11.8 microM oxidized, 3.7 microM reduced), and H55S TDO (18.4 microM oxidized, 5.3 microM reduced).


Assuntos
Proteínas de Bactérias/metabolismo , Histidina/metabolismo , Triptofano Oxigenase/metabolismo , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Domínio Catalítico/genética , Cristalografia por Raios X , Histidina/química , Histidina/genética , Cinética , Modelos Moleculares , Estrutura Molecular , Mutagênese Sítio-Dirigida , Mutação Puntual , Ligação Proteica , Estrutura Secundária de Proteína , Especificidade por Substrato , Triptofano Oxigenase/química , Triptofano Oxigenase/genética , Xanthomonas campestris/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA