Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 13: 904144, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35860659

RESUMO

Initiation of respiratory support in the delivery room increases the risk and severity of brain injury in preterm neonates through two major pathways: an inflammatory pathway and a haemodynamic pathway. The relative contribution of each pathway on preterm brain injury is not known. We aimed to assess the role of the inflammatory and haemodynamic pathway on ventilation-induced brain injury (VIBI) in the preterm lamb. Fetal lambs (125 ± 1 day gestation) were exteriorised, instrumented and ventilated with a high tidal-volume (VT) injurious strategy for 15 min either with placental circulation intact to induce the inflammatory pathway only (INJINF; n = 7) or umbilical cord occluded to induce both the inflammatory and haemodynamic pathways (INJINF+HAE; n = 7). Sham controls were exteriorised but not ventilated (SHAM; n = 5) while unoperated controls (UNOP; n = 7) did not undergo fetal instrumentation. Fetuses were returned in utero following intervention and the ewe allowed to recover. Arterial blood gases and plasma were sampled periodically. Twenty-four hours following intervention, lambs were delivered and maintained on non-injurious ventilation for ∼40 min then brains were collected post-mortem for immunohistochemistry and RT-qPCR to assess inflammation, vascular pathology and cell death within white matter regions. Compared to INJINF lambs, INJINF+HAE lambs achieved a consistently higher VT during injurious ventilation and carotid blood flow was significantly lower than baseline by the end of ventilation. Throughout the 24 h recovery period, systemic arterial IL-6 levels of INJINF+HAE lambs were significantly higher than SHAM while there was no difference between INJINF and SHAM animals. At 24 h, mRNA expression levels of pro-inflammatory cytokines, tight junction proteins, markers of cell death, and histological injury indices of gliosis, blood vessel protein extravasation, oligodendrocyte injury and cell death were not different between groups. Injurious ventilation, irrespective of strategy, did not increase brain inflammation or injury 24 h later when compared to control animals. However, the haemodynamic pathway did influence carotid blood flow adaptations during injurious ventilation and increased systemic arterial IL-6 that may underlie long-term pathology. Future studies are required to further characterise the pathways and their long-term effects on VIBI.

2.
Front Pediatr ; 8: 584138, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33553064

RESUMO

Objective: Continuous positive airway pressures (CPAP) used to assist preterm infants at birth are limited to 4-8 cmH2O due to concerns that high-CPAP may cause pulmonary overexpansion and adversely affect the cardiovascular system. We investigated the effects of high-CPAP on pulmonary (PBF) and cerebral (CBF) blood flows and jugular vein pressure (JVP) after birth in preterm lambs. Methods: Preterm lambs instrumented with flow probes and catheters were delivered at 133/146 days gestation. Lambs received low-CPAP (LCPAP: 5 cmH2O), high-CPAP (HCPAP: 15 cmH2O) or dynamic HCPAP (15 decreasing to 8 cmH2O at ~2 cmH2O/min) for up to 30 min after birth. Results: Mean PBF was lower in the LCPAP [median (Q1-Q3); 202 (48-277) mL/min, p = 0.002] compared to HCPAP [315 (221-365) mL/min] and dynamic HCPAP [327 (269-376) mL/min] lambs. CBF was similar in LCPAP [65 (37-78) mL/min], HCPAP [73 (41-106) mL/min], and dynamic HCPAP [66 (52-81) mL/min, p = 0.174] lambs. JVP was similar at CPAPs of 5 [8.0 (5.1-12.4) mmHg], 8 [9.4 (5.3-13.4) mmHg], and 15 cmH2O [8.6 (6.9-10.5) mmHg, p = 0.909]. Heart rate was lower in the LCPAP [134 (101-174) bpm; p = 0.028] compared to the HCPAP [173 (139-205)] and dynamic HCPAP [188 (161-207) bpm] groups. Ventilation or additional caffeine was required in 5/6 LCPAP, 1/6 HCPAP, and 5/7 dynamic HCPAP lambs (p = 0.082), whereas 3/6 LCPAP, but no HCPAP lambs required intubation (p = 0.041), and 1/6 LCPAP, but no HCPAP lambs developed a pneumothorax (p = 0.632). Conclusion: High-CPAP did not impede the increase in PBF at birth and supported preterm lambs without affecting CBF and JVP.

3.
J Appl Physiol (1985) ; 127(2): 568-578, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31194603

RESUMO

Newborns with lung hypoplasia (LH) commonly have limited respiratory function and often require ventilatory assistance after birth. We aimed to characterize the cardiorespiratory transition and respiratory function in newborn lambs with LH. LH was induced by draining fetal lung liquid in utero [110-133 days (d), term = 147d, n = 6]. At ~133d gestation, LH and Control lambs (n = 6) were instrumented and ventilated for 3 h to monitor blood-gas status, oxygenation, ventilator requirements, and hemodynamics during the transition from fetal to newborn life. Lambs with LH had significantly reduced relative wet and dry lung weights indicating hypoplastic lungs compared with Control lambs. LH lambs experienced persistent hypercapnia and acidosis during the ventilation period, had lower lung compliance, and had higher alveolar-arterial differences in oxygen and oxygenation index compared with Control lambs. As a result, LH lambs required greater respiratory support and more supplemental oxygen. Following delivery, LH lambs experienced periods of significantly lower pulmonary artery blood flow and higher carotid artery blood flow in association with the lower oxygenation levels. The detrimental effects of LH can be attributed to a reduction in lung size and poorer gas exchange capabilities. This study has provided greater understanding of the effect of LH itself on the physiology underpinning the transition from fetal to newborn life. Advances in this area is the key to identifying improved or novel management strategies for babies with LH starting in the delivery room, to favorably alter the fetal-to-newborn transition toward improved outcomes and reduced lifelong morbidity.NEW & NOTEWORTHY Current clinical management of newborns with lung hypoplasia (LH) is largely based on expert opinion rather than scientific evidence. We have generated physiological evidence for detrimental effects of LH on hemodynamics and respiratory function in newborn lambs, which mimics the morbidity observed in LH newborns clinically. The unfavorable consequences of LH can be attributed to a reduction in lung size and poorer gas exchange capabilities.


Assuntos
Pulmão/anormalidades , Parto/fisiologia , Circulação Pulmonar , Respiração , Anormalidades do Sistema Respiratório/fisiopatologia , Animais , Animais Recém-Nascidos , Coração/fisiopatologia , Pulmão/fisiopatologia , Troca Gasosa Pulmonar , Respiração Artificial , Ovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA