Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Chem Neuroanat ; 134: 102347, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37838216

RESUMO

Satellite glial cells (SGCs), involved inter alia in glutamate (Glu) metabolism, form a glial sheath around sensory neurons of dorsal root ganglia (DRGs). SGCs show a presence of glutamine synthetase (GS) which transform uptaken Glu into glutamine (Gln). In DRGs, this aminoacid is used mainly by small neurons which are able to synthetize substance P (SP) that play a crucial role in nociception. The aim of the study was to define the influence of monosodium glutamate (MSG) on GS immunoreactivity in satellite glia around various subpopulations of neurons including SP immunopositive cells in DRGs of adult rats. The studies were carried out on lumbar DRGs slides in rats which received subcutaneous injection of saline solution (control group) or 4 g/kg b. w. of MSG (MSG group). Immunofluorescence reactions were conducted with use of anti-GS and anti-SP antibodies. Administration of MSG to adult rats increased the GS immunoexpression in SGCs. In rats receiving MSG, a number of small neurons with GS-immunopositive glial sheath was not altered when compared to control individuals, whereas there was a statistically significant increase of GS immunoexpression in SGCs around large and medium neurons. Moreover, in these animals, a statistically significant increase in the number of small SP-positive neurons with GS-positive glial sheath was observed. SP is responsible for transmission of pain, thus the obtained results may be useful for further research concerning the roles of glia in nociceptive pathway regulation.


Assuntos
Gânglios Espinais , Glutamato de Sódio , Animais , Ratos , Gânglios Espinais/metabolismo , Glutamato-Amônia Ligase/imunologia , Glutamato-Amônia Ligase/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Glutamato de Sódio/toxicidade , Glutamato de Sódio/metabolismo , Substância P/metabolismo
2.
Animals (Basel) ; 13(13)2023 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-37443975

RESUMO

Although for many years, researchers have been working on understanding the function of the cocaine- and amphetamine-regulated transcript (CART) peptide at the central- and peripheral-nervous-system level, data describing the presence of CART in the claustrum are still missing. Therefore, the aim of the present study was to immunohistochemically investigate the CART expression in the claustrum neurons in chinchillas as well as the CART co-localization with somatostatin (SOM), parvalbumin (PV), and neuropeptide Y (NPY) using double-immunohistochemical staining. The claustrum is divided into two main parts: the dorsal segment (CL), which is located above the rhinal fissure, and the ventral segment (EN), located below the rhinal fissure. The presence of HU C/D-IR CART-IR-positive neurons was detected in both the insular claustrum (CL) and the endopiriform nucleus (EN). The vast majority of CART-IR neurons were predominantly small and medium in size and were evenly scattered throughout the claustrum. CART co-localization with selected neurotransmitters/neuromodulators (SOM, NPY, and PV) showed the presence of a CART-IR reaction only in the neurons, while the nerve fibers were, in all cases, devoid of the CART-IR response. Our research supplements missing knowledge about the distribution and co-localization pattern of CART with SOM, NPY, and PV in the chinchilla claustrum, and also provides a better understanding of the similarities and differences compared to other species of rodents and other mammals.

3.
Sci Rep ; 13(1): 10286, 2023 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-37355724

RESUMO

Acrylamide (ACR) is an amide formed as a byproduct in many heat-processed starchy-rich foods. In utero ACR exposure has been associated with restricted fetal growth, but its effects of postnatal functional development of small intestine is completely unknown. The current study investigated the time- and segment-dependent effects of prenatal ACR exposure on morphological and functional development of small intestine in weaned rat offspring. Four groups of pregnant female Wistar rats were exposed to ACR (3 mg/kg b.w./day) for 0, 5, 10 and 15 days during pregnancy. Basal intestinal morphology, immunolocalization of gut hormones responsible for food intake and proteins of intestinal barrier, activity of the intestinal brush border disaccharidases, apoptosis and proliferation in intestinal mucosa were analyzed in offspring at weaning (postnatal day 21). The results showed that in utero ACR exposure disturbs offspring gut structural and functional postnatal development in a time- and segment-depended manner and even a short prenatal exposure to ACR resulted in changes in intestinal morphology, immunolocalization of leptin and ghrelin and their receptors, barrier function, activity of gut enzymes and upregulation of apoptosis and proliferation. In conclusion, prenatal ACR exposure disturbed the proper postnatal development of small intestine.


Assuntos
Acrilamida , Grelina , Leptina , Efeitos Tardios da Exposição Pré-Natal , Animais , Feminino , Gravidez , Ratos , Acrilamida/toxicidade , Grelina/metabolismo , Mucosa Intestinal/metabolismo , Leptina/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Ratos Wistar , Desmame , Receptores para Leptina/metabolismo , Receptores de Grelina/metabolismo
4.
Animals (Basel) ; 12(24)2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36552495

RESUMO

Extracellular adenosine 5'-triphosphate (ATP) is one of the best-known and frequently studied neurotransmitters. Its broad spectrum of biological activity is conditioned by the activation of purinergic receptors, including the P2X2 receptor. The P2X2 receptor is present in the central and peripheral nervous system of many species, including laboratory animals, domestic animals, and primates. However, the distribution of the P2X2 receptor in the nervous system of the domestic pig, a species increasingly used as an experimental model, is as yet unknown. Therefore, this study aimed to determine the presence of the P2X2 receptor in the neurons of the enteric nervous system (ENS) of the pig small intestine (duodenum, jejunum, and ileum) by the immunofluorescence method. In addition, the chemical code of P2X2-immunoreactive (IR) ENS neurons of the porcine small intestine was analysed by determining the coexistence of selected neuropeptides, i.e., vasoactive intestinal polypeptide (VIP), substance P (sP), and galanin. P2X2-IR neurons were present in the myenteric plexus (MP), outer submucosal plexus (OSP), and inner submucosal plexus (ISP) of all sections of the small intestine (duodenum, jejunum, and ileum). From 44.78 ± 2.24% (duodenum) to 63.74 ± 2.67% (ileum) of MP neurons were P2X2-IR. The corresponding ranges in the OSP ranged from 44.84 ± 1.43% (in the duodenum) to 53.53 ± 1.21% (in the jejunum), and in the ISP, from 53.10 ± 0.97% (duodenum) to 60.57 ± 2.24% (ileum). Immunofluorescence staining revealed the presence of P2X2-IR/galanin-IR and P2X2-IR/VIP-IR neurons in the MP, OSP, and ISP of the sections of the small intestine. The presence of sP was not detected in the P2X2-IR neurons of any ganglia tested in the ENS. Our results indicate for the first time that the P2X2 receptor is present in the MP, ISP, and OSP neurons of all small intestinal segments in pigs, which may suggest that its activation influences the action of the small intestine. Moreover, there is a likely functional interaction between P2X2 receptors and galanin or VIP, but not sP, in the ENS of the porcine small intestine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA