Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 314: 124239, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38579426

RESUMO

The knowledge of variations in the composition of venoms from different snakes is important from both theoretical and practical points of view, in particular, at developing and selecting an antivenom. Many studies on this topic are conducted with pooled venoms, while the existence and significance of variations in the composition of venoms between individual snakes of the same species are emphasized by many authors. It is important to study both inter- and intra-specific, including intra-population, venom variations, because intra-specific variations in the venom composition may affect the effectiveness of antivenoms as strongly as inter-specific. In this work, based on venom Raman spectroscopy with principal component analysis, we assessed the variations in venoms of individual snakes of the Vipera nikolskii species from two populations and compared these intra-specific variations with inter-specific variations (with regard to the other related species). We demonstrated intra-specific (inter- and intra-population) differences in venom compositions which are smaller than inter-specific variations. We also assessed the compositions of V. nikolskii venoms from two populations to explain inter-population differences. The method used is rapid and requires virtually no preparation of samples, used in extremely small quantities, allowing the venoms of individual snakes to be analyzed. In addition, the method is informative and capable of detecting fairly subtle differences in the composition of venoms.


Assuntos
Análise Espectral Raman , Peçonhas , Antivenenos
2.
Biomolecules ; 12(11)2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36358963

RESUMO

The properties of a lysozyme solution under laser-induced breakdown were studied. An optical breakdown under laser action in protein solutions proceeds with high efficiency: the formation of plasma and acoustic oscillations is observed. The concentration of protein molecules has very little effect on the physicochemical characteristics of optical breakdown. After exposure to optical breakdown, changes were observed in the enzymatic activity of lysozyme, absorption and fluorescence spectra, viscosity, and the sizes of molecules and aggregates of lysozyme measured by dynamic light scattering. However, the refractive index of the solution and the Raman spectrum did not change. The appearance of a new fluorescence peak was observed upon excitation at 350 nm and emission at 434 nm at exposure for 30 min. Previously, a peak in this range was associated with the fluorescence of amyloid fibrils. However, neither the ThT assay nor the circular dichroism dispersion confirmed the formation of amyloid fibrils. Probably, under the influence of optical breakdown, a small part of the protein degraded, and a part changed its native state and aggregated, forming functional dimers or "native aggregates".


Assuntos
Amiloide , Muramidase , Muramidase/química , Amiloide/química , Dicroísmo Circular , Difusão Dinâmica da Luz , Lasers
3.
Cell Mol Life Sci ; 78(23): 7777-7794, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34714362

RESUMO

The COVID-19 pandemic caused by SARS-CoV-2 requires new treatments both to alleviate the symptoms and to prevent the spread of this disease. Previous studies demonstrated good antiviral and virucidal activity of phospholipase A2s (PLA2s) from snake venoms against viruses from different families but there was no data for coronaviruses. Here we show that PLA2s from snake venoms protect Vero E6 cells against SARS-CoV-2 cytopathic effects. PLA2s showed low cytotoxicity to Vero E6 cells with some activity at micromolar concentrations, but strong antiviral activity at nanomolar concentrations. Dimeric PLA2 from the viper Vipera nikolskii and its subunits manifested especially potent virucidal effects, which were related to their phospholipolytic activity, and inhibited cell-cell fusion mediated by the SARS-CoV-2 spike glycoprotein. Moreover, PLA2s interfered with binding both of an antibody against ACE2 and of the receptor-binding domain of the glycoprotein S to 293T/ACE2 cells. This is the first demonstration of a detrimental effect of PLA2s on ß-coronaviruses. Thus, snake PLA2s are promising for the development of antiviral drugs that target the viral envelope, and could also prove to be useful tools to study the interaction of viruses with host cells.


Assuntos
Fosfolipases A2/farmacologia , SARS-CoV-2/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/metabolismo , Venenos de Víboras/farmacologia , Ligação Viral/efeitos dos fármacos , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Afinidade de Anticorpos/efeitos dos fármacos , Antivirais/farmacologia , Fusão Celular , Linhagem Celular , Chlorocebus aethiops , Efeito Citopatogênico Viral/efeitos dos fármacos , Células HEK293 , Humanos , Modelos Moleculares , Domínios Proteicos/efeitos dos fármacos , Ressonância de Plasmônio de Superfície , Células Vero , Venenos de Víboras/enzimologia , Tratamento Farmacológico da COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA