Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 17152, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821558

RESUMO

Pearl millet (Pennisetum glaucum [L.] R. Br.) is a nutrient-dense, relatively drought-tolerant cereal crop cultivated in dry regions worldwide. The crop is under-researched, and its grain yield is low (< 0.8 tons ha-1) and stagnant in the major production regions, including Burkina Faso. The low productivity of pearl millet is mainly attributable to a lack of improved varieties, Striga hermonthica [Sh] infestation, downy mildew infection, and recurrent heat and drought stress. Developing high-yielding and Striga-resistant pearl millet varieties that satisfy the farmers' and market needs requires the identification of yield-promoting genes linked to economic traits to facilitate marker-assisted selection and gene pyramiding. The objective of this study was to undertake genome-wide association analyses of agronomic traits and Sh resistance among 150 pearl millet genotypes to identify genetic markers for marker-assisted breeding and trait introgression. The pearl millet genotypes were phenotyped in Sh hotspot fields and screen house conditions. Twenty-nine million single nucleotide polymorphisms (SNPs) initially generated from 345 pearl millet genotypes were filtered, and 256 K SNPs were selected and used in the present study. Phenotypic data were collected on days to flowering, plant height, number of tillers, panicle length, panicle weight, thousand-grain weight, grain weight, number of emerged Striga and area under the Striga number progress curve (ASNPC). Agronomic and Sh parameters were subjected to combined analysis of variance, while genome-wide association analysis was performed on phenotypic and SNPs data. Significant differences (P < 0.001) were detected among the assessed pearl millet genotypes for Sh parameters and agronomic traits. Further, there were significant genotype by Sh interaction for the number of Sh and ASNPC. Twenty-eight SNPs were significantly associated with a low number of emerged Sh located on chromosomes 1, 2, 3, 4, 6, and 7. Four SNPs were associated with days-to-50%-flowering on chromosomes 3, 5, 6, and 7, while five were associated with panicle length on chromosomes 2, 3, and 4. Seven SNPs were linked to thousand-grain weight on chromosomes 2, 3, and 6. The putative SNP markers associated with a low number of emerged Sh and agronomic traits in the assessed genotypes are valuable genomic resources for accelerated breeding and variety deployment of pearl millet with Sh resistance and farmer- and market-preferred agronomic traits.


Assuntos
Pennisetum , Striga , Pennisetum/genética , Locos de Características Quantitativas , Striga/genética , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Grão Comestível/genética
3.
Front Plant Sci ; 14: 1163785, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37235028

RESUMO

The potential yield of maize (Zea mays L.) and other major crops is curtailed by several biotic, abiotic, and socio-economic constraints. Parasitic weeds, Striga spp., are major constraints to cereal and legume crop production in sub-Saharan Africa (SSA). Yield losses reaching 100% are reported in maize under severe Striga infestation. Breeding for Striga resistance has been shown to be the most economical, feasible, and sustainable approach for resource-poor farmers and for being environmentally friendly. Knowledge of the genetic and genomic resources and components of Striga resistance is vital to guide genetic analysis and precision breeding of maize varieties with desirable product profiles under Striga infestation. This review aims to present the genetic and genomic resources, research progress, and opportunities in the genetic analysis of Striga resistance and yield components in maize for breeding. The paper outlines the vital genetic resources of maize for Striga resistance, including landraces, wild relatives, mutants, and synthetic varieties, followed by breeding technologies and genomic resources. Integrating conventional breeding, mutation breeding, and genomic-assisted breeding [i.e., marker-assisted selection, quantitative trait loci (QTL) analysis, next-generation sequencing, and genome editing] will enhance genetic gains in Striga resistance breeding programs. This review may guide new variety designs for Striga-resistance and desirable product profiles in maize.

4.
G3 (Bethesda) ; 12(7)2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35385099

RESUMO

Modern breeding methods integrate next-generation sequencing and phenomics to identify plants with the best characteristics and greatest genetic merit for use as parents in subsequent breeding cycles to ultimately create improved cultivars able to sustain high adoption rates by farmers. This data-driven approach hinges on strong foundations in data management, quality control, and analytics. Of crucial importance is a central database able to (1) track breeding materials, (2) store experimental evaluations, (3) record phenotypic measurements using consistent ontologies, (4) store genotypic information, and (5) implement algorithms for analysis, prediction, and selection decisions. Because of the complexity of the breeding process, breeding databases also tend to be complex, difficult, and expensive to implement and maintain. Here, we present a breeding database system, Breedbase (https://breedbase.org/, last accessed 4/18/2022). Originally initiated as Cassavabase (https://cassavabase.org/, last accessed 4/18/2022) with the NextGen Cassava project (https://www.nextgencassava.org/, last accessed 4/18/2022), and later developed into a crop-agnostic system, it is presently used by dozens of different crops and projects. The system is web based and is available as open source software. It is available on GitHub (https://github.com/solgenomics/, last accessed 4/18/2022) and packaged in a Docker image for deployment (https://hub.docker.com/u/breedbase, last accessed 4/18/2022). The Breedbase system enables breeding programs to better manage and leverage their data for decision making within a fully integrated digital ecosystem.


Assuntos
Ecossistema , Melhoramento Vegetal , Algoritmos , Produtos Agrícolas/genética , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA