Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1110540, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36776891

RESUMO

Introduction: Major clinically relevant inflammatory events such as septic shock and severe COVID-19 trigger dynamic changes in the host immune system, presenting promising candidates for new biomarkers to improve precision diagnostics and patient stratification. Hepcidin, a master regulator of iron metabolism, has been intensively studied in many pathologies associated with immune system activation, however these data have never been compared to other clinical settings. Thus, we aimed to reveal the dynamics of iron regulation in various clinical settings and to determine the suitability of hepcidin and/or ferritin levels as biomarkers of inflammatory disease severity. Cohorts: To investigate the overall predictive ability of hepcidin and ferritin, we enrolled the patients suffering with three different diagnoses - in detail 40 patients with COVID-19, 29 patients in septic shock and eight orthopedic patients who were compared to nine healthy donors and all cohorts to each other. Results: We showed that increased hepcidin levels reflect overall immune cell activation driven by intrinsic stimuli, without requiring direct involvement of infection vectors. Contrary to hepcidin, ferritin levels were more strongly boosted by pathogen-induced inflammation - in septic shock more than four-fold and in COVID-19 six-fold in comparison to sterile inflammation. We also defined the predictive capacity of hepcidin-to-ferritin ratio with AUC=0.79 and P = 0.03. Discussion: Our findings confirm that hepcidin is a potent marker of septic shock and other acute inflammation-associated pathologies and demonstrate the utility of the hepcidin-to-ferritin ratio as a predictor of mortality in septic shock, but not in COVID-19.


Assuntos
COVID-19 , Choque Séptico , Humanos , Hepcidinas/metabolismo , Ferro/metabolismo , Ferritinas , Inflamação , Biomarcadores
2.
Front Med (Lausanne) ; 9: 972040, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36117974

RESUMO

Sepsis is a clinical syndrome characterized by a dysregulated response to infection. It represents a leading cause of mortality in ICU patients worldwide. Although sepsis is in the point of interest of research for several decades, its clinical management and patient survival are improving slowly. Monitoring of the biomarkers and their combinations could help in early diagnosis, estimation of prognosis and patient's stratification and response to the treatment. Circulating soluble endoglin (sEng) is the cleaved extracellular part of transmembrane glycoprotein endoglin. As a biomarker, sEng has been tested in several pathologic conditions where its elevation was associated with endothelial dysfunction. In this study we have tested the ability of sEng to predict mortality and its correlation with other clinical characteristics in the cohort of septic shock patients (n = 37) and patients with severe COVID-19 (n = 40). In patients with COVID-19 sEng did not predict mortality or correlate with markers of organ dysfunction. In contrast, in septic shock the level of sEng was significantly higher in patients with early mortality (p = 0.019; AUC = 0.801). Moreover, sEng levels correlated with signs of circulatory failure (required dose of noradrenalin and lactate levels; p = 0.002 and 0.016, respectively). The predominant clinical problem in patients with COVID-19 was ARDS, and although they often showed signs of other organ dysfunction, circulatory failure was exceptional. This potentially explains the difference between sEng levels in COVID-19 and septic shock. In conclusion, we have confirmed that sEng may reflect the extent of the circulatory failure in septic shock patients and thus could be potentially used for the early identification of patients with the highest degree of endothelial dysfunction who would benefit from endothelium-targeted individualized therapy.

3.
Front Immunol ; 12: 741484, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34966382

RESUMO

Sepsis and septic shock remain leading causes of morbidity and mortality for patients in the intensive care unit. During the early phase, immune cells produce various cytokines leading to prompt activation of the immune system. Polymorphonuclear leukocytes (PMNs) respond to different signals producing inflammatory factors and executing their antimicrobial mechanisms, resulting in the engulfment and elimination of invading pathogens. However, excessive activation caused by various inflammatory signals produced during sepsis progression can lead to the alteration of PMN signaling and subsequent defects in their functionality. Here, we analyzed samples from 34 patients in septic shock, focusing on PMNs gene expression and proteome changes associated with septic shock. We revealed that, compared to those patients who survived longer than five days, PMNs from patients who had fulminant sepsis were characterized by a dysfunctional hyper-activation, show altered metabolism, and recent exit from the cell cycle and signs of cellular lifespan. We believe that this multi-omics approach, although limited, pinpoints the alterations in PMNs' functionality, which may be rescued by targeted treatments.


Assuntos
Neutrófilos/imunologia , Sepse/imunologia , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Humanos , Unidades de Terapia Intensiva , Masculino , Pessoa de Meia-Idade , Neutrófilos/patologia , Estudos Prospectivos , Sepse/patologia
4.
Microbiol Resour Announc ; 8(47)2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31753953

RESUMO

Panton-Valentine leucocidin (PVL)-positive methicillin-resistant Staphylococcus aureus (MRSA) strains cause life-threatening diseases. We present a draft genome sequence of PVL-positive MRSA sequence type 154 (ST154) strain NRL 08/001, isolated from a fatal case of necrotizing pneumonia. The genome consists of 2.9 Mb over 39 contigs and harbors novel composite island staphylococcal cassette chromosome mec element (SCCmec)-mercury composite type 2B&5.

5.
Int J Mol Sci ; 20(18)2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-31540287

RESUMO

In both mitosis and meiosis, metaphase to anaphase transition requires the activity of a ubiquitin ligase known as anaphase promoting complex/cyclosome (APC/C). The activation of APC/C in metaphase is under the control of the checkpoint mechanism, called the spindle assembly checkpoint (SAC), which monitors the correct attachment of all kinetochores to the spindle. It has been shown previously in somatic cells that exposure to a small molecule inhibitor, prodrug tosyl-l-arginine methyl ester (proTAME), resulted in cell cycle arrest in metaphase, with low APC/C activity. Interestingly, some reports have also suggested that the activity of SAC is required for this arrest. We focused on the characterization of proTAME inhibition of cell cycle progression in mammalian oocytes and embryos. Our results show that mammalian oocytes and early cleavage embryos show dose-dependent metaphase arrest after exposure to proTAME. However, in comparison to the somatic cells, we show here that the proTAME-induced arrest in these cells does not require SAC activity. Our results revealed important differences between mammalian oocytes and early embryos and somatic cells in their requirements of SAC for APC/C inhibition. In comparison to the somatic cells, oocytes and embryos show much higher frequency of aneuploidy. Our results are therefore important for understanding chromosome segregation control mechanisms, which might contribute to the premature termination of development or severe developmental and mental disorders of newborns.


Assuntos
Desenvolvimento Embrionário/efeitos dos fármacos , Pontos de Checagem da Fase M do Ciclo Celular , Oócitos/crescimento & desenvolvimento , Tosilarginina Metil Éster/administração & dosagem , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Animais , Bovinos , Relação Dose-Resposta a Droga , Embrião de Mamíferos/efeitos dos fármacos , Embrião de Mamíferos/metabolismo , Feminino , Camundongos , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Pró-Fármacos , Tosilarginina Metil Éster/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA