Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Gels ; 8(1)2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35049598

RESUMO

The aim of the study was to investigate the influence of addition of sodium alginate (SA) and chitosan (CH) on the properties of inulin hydrogels. Inulin hydrogels (20 g/100 g) containing various additions (0.0, 0.1, 0.3, and 0.5 g/100 g) of SA and CH were produced. The hydrogels' properties were assessed based on the volumetric gel index, microstructure, yield stress, texture, stability, and color parameters. According to the findings, the inclusion of these polysaccharides had no influence on the gelation ability of the inulin solution. The physical properties of the hydrogels containing SA or CH differed from hydrogels containing only inulin (INU). The obtained microstructural pictures revealed that the addition of SA and CH resulted in the formation of hydrogels with a more compact, smooth, and cohesive structure. Consequently, they had higher yield stress, strength, and spreadability values than INU hydrogels. The addition of chitosan in comparison with sodium alginate also had a greater effect in strengthening the structure of hydrogels, especially at the level of 0.5 g/100 g. For example, the addition of this amount of SA increased the yield stress on average from 195.0 Pa (INU) to 493.6 Pa, while the addition of CH increased it to 745.3 Pa. In the case of the strength parameter, the addition of SA increased the force from 0.24 N (INU) to 0.42 N and the addition of CH increased it to 1.29 N. In the case of spreadability this increase was from 2.89 N * s (INU) to 3.44 N * s (SA) and to 6.16 N * s (CH). Chitosan also caused an increase in the stability of inulin hydrogels, whereas such an effect was not observed with the addition of sodium alginate. The gels with the addition of SA and CH also had significantly different values of color parameters. Inulin-alginate hydrogels were characterized by higher values of the color parameter a *, lower values of the color parameter b *, and in most concentrations higher values of the color parameter L * compared to inulin-chitosan hydrogels. Based on the collected data, it can therefore be concluded that through the addition of sodium alginate and chitosan, there is a possibility to modify the properties of inulin hydrogels and, consequently, to better adapt them to the characteristics of the pro-health food products in which they will be used.

2.
Materials (Basel) ; 12(18)2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31514463

RESUMO

Nitrogen-vacancy color centers in diamond are a very promising medium for many sensing applications such as magnetometry and thermometry. In this work, we study nanodiamonds deposited from a suspension onto glass substrates. Fluorescence and optically detected magnetic resonance spectra recorded with the dried-out nanodiamond ensembles are presented and a suitable scheme for tracking the magnetic-field value using a continuous poly-crystalline spectrum is introduced. Lastly, we demonstrate a remote-sensing capability of the high-numerical-aperture imaging fiber bundle with nanodiamonds deposited on its end facet.

3.
BMC Genomics ; 15: 124, 2014 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-24517536

RESUMO

BACKGROUND: Paracoccus aminophilus JCM 7686 is a methylotrophic α-Proteobacterium capable of utilizing reduced one-carbon compounds as sole carbon and energy source for growth, including toxic N,N-dimethylformamide, formamide, methanol, and methylamines, which are widely used in the industry. P. aminophilus JCM 7686, as many other Paracoccus spp., possesses a genome representing a multipartite structure, in which the genomic information is split between various replicons, including chromids, essential plasmid-like replicons, with properties of both chromosomes and plasmids. In this study, whole-genome sequencing and functional genomics approaches were applied to investigate P. aminophilus genome information. RESULTS: The P. aminophilus JCM 7686 genome has a multipartite structure, composed of a single circular chromosome and eight additional replicons ranging in size between 5.6 and 438.1 kb. Functional analyses revealed that two of the replicons, pAMI5 and pAMI6, are essential for host viability, therefore they should be considered as chromids. Both replicons carry housekeeping genes, e.g. responsible for de novo NAD biosynthesis and ammonium transport. Other mobile genetic elements have also been identified, including 20 insertion sequences, 4 transposons and 10 prophage regions, one of which represents a novel, functional serine recombinase-encoding bacteriophage, ϕPam-6. Moreover, in silico analyses allowed us to predict the transcription regulatory network of the JCM 7686 strain, as well as components of the stress response, recombination, repair and methylation machineries. Finally, comparative genomic analyses revealed that P. aminophilus JCM 7686 has a relatively distant relationship to other representatives of the genus Paracoccus. CONCLUSIONS: P. aminophilus genome exploration provided insights into the overall structure and functions of the genome, with a special focus on the chromids. Based on the obtained results we propose the classification of bacterial chromids into two types: "primary" chromids, which are indispensable for host viability and "secondary" chromids, which are essential, but only under some environmental conditions and which were probably formed quite recently in the course of evolution. Detailed genome investigation and its functional analysis, makes P. aminophilus JCM 7686 a suitable reference strain for the genus Paracoccus. Moreover, this study has increased knowledge on overall genome structure and composition of members within the class Alphaproteobacteria.


Assuntos
Genoma Bacteriano , Paracoccus/genética , Sequência de Bases , Metilação de DNA , Reparo do DNA , Elementos de DNA Transponíveis , Redes Reguladoras de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Dados de Sequência Molecular , Paracoccus/classificação , Paracoccus/virologia , Filogenia , Prófagos/fisiologia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA