Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 3: 1830, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23665858

RESUMO

Charge-orbital ordering is commonly present in complex transition metal oxides and offers interesting opportunities for novel electronic devices. In this work, we demonstrate for the first time that the magnetization states of the spin valve can be directly manipulated by charge-orbital ordering. We investigate the interlayer exchange coupling (IEC) between two epitaxial magnetite layers separated by a nonmagnetic epitaxial MgO dielectric. We find that the state of the charge-orbital ordering in magnetite defines the strength, and even the sign of the IEC. First-principles calculations further show that the charge-orbital ordering modifies the spin polarized electronic states at the Fe(3)O(4)/MgO interfaces and results in a sufficiently large phase shift of wave function which are responsible for the observed IEC sign change across Verwey temperature. Our findings may open new interesting avenues for the electric field control of the magnetization states of spin valves via charge-orbital ordering driven IEC sign change.

2.
Adv Mater ; 24(47): 6374-9, 2012 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-22996352

RESUMO

Mn(2)Au, a layered bimetal, is successfully grown using molecular beam epitaxy (MBE). The experiments and theoretical calculations presented suggest that Mn(2)Au film is antiferromagnetic with a very low critical temperature. The antiferromagnetic nature is demonstrated by measuring the exchange-bias effect of Mn(2)Au/Fe bilayers. This study establishes a primary basis for further research of this new antiferromagnet in spin-electronic device applications.

3.
Nano Lett ; 10(4): 1132-6, 2010 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-20349971

RESUMO

We have probed one antiferromagnetic (AF) antiphase boundary (APB) and a single Fe(3)O(4) domain using nanogap contacts. Our experiments directly demonstrate that, in the case of probing one AF-APB, a large magnetoresistance (MR), high resistivity, and a high saturation field are observed as compared with the case of probing a single Fe(3)O(4) domain. The shape of the temperature-dependent MR curves is also found to differ between the single domain and one of the AF-APB measurements, with a characteristic strong temperature dependence for the single domain and temperature independence for the one AF-APB case. We argue that these observations are indicative of profound changes in the electronic transport across APBs. The investigated APB defects increase the activation energy and disturb the long-range charge ordering of monodomain Fe(3)O(4).


Assuntos
Compostos Férricos/química , Magnetismo , Nanoestruturas/química , Nanotecnologia/métodos , Tamanho da Partícula
4.
Phys Rev Lett ; 93(19): 197403, 2004 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-15600878

RESUMO

It is demonstrated that ultrafast generation of ferromagnetic order can be achieved by driving a material from an antiferromagnetic to a ferromagnetic state using femtosecond optical pulses. Experimental proof is provided for chemically ordered FeRh thin films. A subpicosecond onset of induced ferromagnetism is followed by a slower increase over a period of about 30 ps when FeRh is excited above a threshold fluence. Both experiment and theory provide evidence that the underlying phase transformation is accompanied, but not driven, by a lattice expansion. The mechanism for the observed ultrafast magnetic transformation is identified to be the strong ferromagnetic exchange mediated via Rh moments induced by Fe spin fluctuations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA