Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(50): 109162-109180, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37770741

RESUMO

Antibiotic-contaminated water is a crucial issue worldwide. Thus, in this study, the MgFeCa-layered double hydroxides were supported in date palm-derived biochar (B) using co-precipitation, hydrothermal, and co-pyrolysis methods. It closes gaps in composite design for pharmaceutical pollutant removal, advances eco-friendly adsorbents, and advances targeted water cleanup by investigating synthesis methodologies and gaining new insights into adsorption. The prepared B-MgFeCa composites were investigated for tetracycline (TC) adsorption from an aqueous solution. The B-MgFeCa composites synthesized through co-precipitation and hydrothermal methods exhibited better crystallinity, functional groups, and well-developed LDH structure within the biochar matrix. However, the co-pyrolysis method resulted in the LDH structure breakage, leading to the low crystalline composite material. The maximum adsorption of TC onto all B-MgFeCa was obtained at an acidic pH range (4-5). The B-MgFeCa composites produced via hydrothermal and co-pyrolysis methods showed higher and faster TC adsorption than the co-precipitation method. The kinetic results can be better described by Langmuir kinetic and mixed order models at low and high TC concentrations, indicating that the rate-limiting step is mainly associated with active binding sites adsorption. The Sip and Freundlich models showed better fitting with the equilibrium data. The TC removal by B-MgFeCa composites prepared via hydrothermal, the highest estimated uptake which is around 639.76 mg.g-1 according to the Sips model at ambient conditions, and co-pyrolysis was mainly dominated by physical and chemical interactions. The composite obtained via the co-precipitation method adsorbed TC through chemical bonding between surface functional groups with anionic species of TC molecule. The B-MgFeCa composite showed excellent reusability performance for up to five cycles with only a 30% decrease in TC removal efficiency. The results demonstrated that B-MgFeCa composites could be used as promising adsorbent materials for effective wastewater treatment.


Assuntos
Poluentes Químicos da Água , Água , Adsorção , Poluentes Químicos da Água/análise , Tetraciclina/química , Antibacterianos , Carvão Vegetal/química , Hidróxidos/química , Cinética
2.
Molecules ; 26(14)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34299541

RESUMO

A sewage sludge-based activated carbon (SBAC) intercalated MgAlFe ternary layered double hydroxide (SBAC-MgAlFe-LDH) composite was synthesized via the coprecipitation method. The adsorptive performance of the composite for phenol uptake from the aqueous phase was evaluated via the response surface methodology (RSM) modeling technique. The SBAC-MgAlFe-LDH phenol uptake capacity data were well-fitted to reduced RSM cubic model (R2 = 0.995, R2-adjusted = 0.993, R2-predicted = 0.959 and p-values < 0.05). The optimum phenol adsorption onto the SBAC-MgAlFe-LDH was achieved at 35 °C, 125 mg/L phenol, and pH 6. Under the optimal phenol uptake conditions, pseudo-first-order and Avrami fractional-order models provided a better representation of the phenol uptake kinetic data, while the equilibrium data models' fitting follows the order; Liu > Langmuir > Redlich-Peterson > Freundlich > Temkin. The phenol uptake mechanism was endothermic in nature and predominantly via a physisorption process (ΔG° = -5.33 to -5.77 kJ/mol) with the involvement of π-π interactions between the phenol molecules and the functionalities on the SBAC-LDH surface. The maximum uptake capacity (216.76 mg/g) of SBAC-MgAlFe-LDH was much higher than many other SBAC-based adsorbents. The improved uptake capacity of SBAC-LDH was attributed to the effective synergetic influence of SBAC-MgAlFe-LDH, which yielded abundant functionalized surface groups that favored higher aqueous phase uptake of phenol molecules. This study showcases the potential of SBAC-MgAlFe-LDH as an effective adsorbent material for remediation of phenolic wastewater.

3.
Polymers (Basel) ; 12(11)2020 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-33113873

RESUMO

In the last two decades, the application of microwave heating to the processing of materials has to become increasingly widespread. Microwave-assisted foaming processes show promise for industrial commercialization due to the potential advantages that microwaves have shown compared to conventional methods. These include reducing process time, improved energy efficiency, solvent-free foaming, reduced processing steps, and improved product quality. However, the interaction of microwave energy with foaming materials, the effects of critical processing factors on microwave foaming behavior, and the foamed product's final properties are still not well-explored. This article reviews the mechanism and principles of microwave foaming of different materials. The article critically evaluates the impact of influential foaming parameters such as blowing agent, viscosity, precursor properties, microwave conditions, additives, and filler on the interaction of microwave, foaming material, physical (expansion, cellular structure, and density), mechanical, and thermal properties of the resultant foamed product. Finally, the key challenges and opportunities for developing industrial microwave foaming processes are identified, and areas for potential future research works are highlighted.

4.
Nanomaterials (Basel) ; 10(7)2020 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-32664637

RESUMO

This experimental work focused on the synthesis, characterization, and testing of a unique, magnetically separable, and eco-friendly adsorbent composite material for the advanced treatment and efficient removal of nitrate and phosphate pollutants from wastewater. The MgAl-augmented double-layered hydroxide (Mg-Fe/LDH) intercalated with sludge-based activated carbon (SBAC-MgFe) composites were characterized by FT-IR, XRD, BET, VSM, SEM, and TEM techniques, revealing homogeneous and efficient dispersion of MgFe/LDH within the activated carbon (AC) matrix, a highly mesoporous structure, and superparamagnetic characteristics. The initial solution pH, adsorbent dose, contact time, and temperature parameters were optimized in order to reach the best removal performance for both pollutants. The maximum adsorption capacities of phosphate and nitrate were found to be 110 and 54.5 mg/g, respectively. The competition between phosphate and coexisting ions (Cl-, CO32-, and SO42-) was studied and found to be remarkably lower in comparison with the nitrate adsorption. The adsorption mechanisms were elucidated by kinetic, isotherm, thermodynamic modeling, and post-adsorption characterizations of the composite. Modeling and mechanistic studies demonstrated that physisorption processes such as electrostatic attraction and ion exchange mainly governed the nitrate and phosphate adsorption. The composite indicated an outstanding regeneration performance even after five sequences of adsorption/desorption cycles. The fabricated composite with magnetically separable characteristics can be used as a promising adsorbent for the removal of phosphate and nitrate pollutants from wastewater.

5.
Sci Total Environ ; 721: 137659, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32182459

RESUMO

Treated wastewater reuse is increasingly important for sustainable water resource management, especially in water-stressed countries located in the world's arid regions that rely on groundwater and desalination process for meeting their water demands. This study investigates the socio-demographic variables influencing public perceptions of reusing grey and mixed wastewater for non-domestic uses: firefighting, swimming pools, and car washing. Data were collected from 624 households in the Dammam Metropolitan Area, Saudi Arabia using a structured questionnaire and analyzed using descriptive and inferential statistics. The results from logistic regression indicates that the likelihood of a household to accept reusing treated mixed wastewater is influenced by gender with odds ratio (OR) of 2.71-2.18, residential location (OR = 1.32-1.03), age (OR = 1.22-0.18) and educational level (OR = 1.33-0.98), with a tendency for more acceptance of treated grey wastewater than mixed wastewater. These findings showcase the difficulty that the country could face concerning the public acceptance of treated wastewater for non-domestic uses to augment current freshwater sources even among the educated class. This study is significant because sustainably meeting the country's rising water demands requires the stringent implementation of strategic wastewater reuse policy, including bold steps towards wastewater streams segregation, and intensive public awareness campaigns to change negative perceptions on treated sewage effluent. This study concludes that a substantial reduction in the country's reliance on costly desalinated water and fast depleting non-renewable groundwater requires complete reuse and recycling of treated wastewater for wider non-conventional purposes.

6.
Artigo em Inglês | MEDLINE | ID: mdl-32131553

RESUMO

The present study investigates the performance of a pilot-scale Sequencing Batch Reactor (SBR) process for the treatment of wastewater quality parameters, including turbidity, total suspended solids (TSS), total solids (TS), nitrogen (ammonia (NH3-N), nitrite (NO2-), and nitrate (NO3-), phosphate (PO43-), the chemical oxygen demand (COD), and the 5-day biological oxygen demand (BOD5), from municipal wastewater. Two scenarios, namely, pre-anoxic denitrification and post-anoxic denitrification, were investigated to examine the performance of a pilot-scale SBR on the wastewater quality parameters, particularly the nitrogen removal. The correlation statistic was applied to explain the effects of operational parameters on the performance of the SBR system. The results revealed that the post-anoxic denitrification scenario was more efficient for higher qualify effluent than the first scenario. The effluent concentrations of the targeted wastewater quality parameters obtained for the proposed SBR system were below those of the local standards, while its performance was better than that of the North Sewage Treatment Plant, Dharan, Eastern province, Kingdom of Saudi Arabia (KSA), in terms of the BOD5, COD, TN, and PO43- treatment efficiencies. These results indicated the suitability of SBR technology for wastewater treatment in remote areas in the KSA, with a high potential of reusability for sustainable wastewater management.


Assuntos
Reatores Biológicos , Esgotos , Eliminação de Resíduos Líquidos , Águas Residuárias , Anaerobiose , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos/normas , Nitrogênio , Arábia Saudita , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química
8.
Nanomaterials (Basel) ; 10(2)2020 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-32079126

RESUMO

In this study, date-palm biochar MgAl-augmented double-layered hydroxide (biochar-MgAl-LDH) nanocomposite was synthesized, characterized, and used for enhancing the removal of phosphate and nitrate pollutants from wastewater. The biochar-MgAl-LDH had higher selectivity and adsorption affinity towards phosphate compared to nitrate. The adsorption kinetics of both anions were better explained by the pseudo-first-order model with a faster removal rate to attain equilibrium in a shorter time, especially at lower initial phosphate-nitrate concentration. The maximum monolayer adsorption capacities of phosphate and nitrate by the non-linear Langmuir model were 177.97 mg/g and 28.06 mg/g, respectively. The coexistence of anions (Cl-, SO42-, NO3-, CO32- and HCO3-) negligibly affected the removal of phosphate due to its stronger bond on the nano-composites, while the presence of Cl- and PO43- reduced the nitrate removal attributed to the ions' participation in the active adsorption sites on the surface of biochar-MgAl-LDH. The excellent adsorptive performance is the main synergetic influence of the MgAl-LDH incorporation into the biochar. The regeneration tests confirmed that the biochar-MgAl composite can be restored effortlessly and has the prospective to be reused after several subsequent adsorption-desorption cycles. The biochar-LDH further demonstrated capabilities for higher removal of phosphate and nitrate from real wastewater.

9.
Water Environ Res ; 90(9): 771-782, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29891021

RESUMO

This study investigated the influence of montmorillonite content in a natural clay on the aqueous uptake of lead and zinc, using factorial design analysis. The effects of initial pH, montmorillonite content, initial metal concentration, and adsorbent mass on the sorption capacity of lead and zinc were evaluated using variance analysis. Increasing montmorillonite content had an insignificant effect on lead adsorption capacity whilst significantly influencing that of zinc. Comparable equilibrium sorption capacities for lead and zinc were achieved when the retention time for zinc adsorption was significantly increased and montmorillonite content was high. Under experimentally verified operating conditions, pseudo-second-order and pseudo-first-order kinetics, respectively, described the ions adsorption process with intraparticle diffusion not the sole rate-controlling step. These results suggest that the montmorillonite content in natural clays exhibits distinct affinity behaviors towards the uptake of different heavy metals. This is expected to divergently influence processes such adsorption and electrokinetic remediation, for clays with differing montmorillonite content.


Assuntos
Silicatos de Alumínio , Bentonita/química , Chumbo/química , Água/química , Zinco/química , Adsorção , Argila , Poluentes Químicos da Água/química , Purificação da Água
10.
J Hazard Mater ; 342: 58-68, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-28822250

RESUMO

The occurrences of heavy metal contaminated sites and soils and the need for devising environmentally friendly solutions have become global issues of serious concern. In this study, polyaspartate (a highly biodegradable agent) was synthesized using L-Aspartic acid via a new modified thermal procedure and employed for extraction of cadmium ions (Cd) from contaminated soil. Response surface methodology approach using 35 full faced centered central composite design was employed for modeling, evaluating and optimizing the influence of polyaspartate concentration (36-145mM), polyaspartate/soil ratio (5-25), initial heavy metal concentration (100-500mg/kg), initial pH (3-6) and extraction time (6-24h) on Cd ions extracted into the polyaspartate solution and its residual concentration in the treated soil. The Cd extraction efficacy obtained reached up to 98.8%. Increase in Cd extraction efficiency was associated with increase in the polyaspartate and Cd concentration coupled with lower polyaspertate/soil ratio and initial pH. Under the optimal conditions characterized with minimal utilization of the polyaspartate and high Cd ions removal, the extractible Cd in the polyaspartate solution reached up to 84.4mg/L which yielded 85% Cd extraction efficacy. This study demonstrates the suitability of using polyaspartate as an effective environmentally friendly chelating agent for Cd extraction from contaminated soils.

11.
Water Sci Technol ; 76(7-8): 2213-2221, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29068351

RESUMO

Multicomponent adsorption of Cd, Cr, Cu, Pb and Zn onto date palm pits based granular activated carbon (GAC) augmented with highly active natural clay at different proportion was investigated. The effects of the initial pH and the adsorbents mixed ratio on the removal selectivity sequence of the metals evaluated. Batch adsorption experiments were undertaken at initial pH 2, 6 and 12. At initial pH 2, both the percent removal and the metals adsorptive capacity decreased with increasing GAC to clay ratio (from 0 to 1) with the percentage removal of Cd, Zn and Cr ions dropping from 68, 81, 100% to 43, 57 and 70%, respectively. At both pH 6 and 12, the percentage removals and adsorption capacities of all the heavy metal ions are higher than at pH 2. Selectivity sequences for pH 2, 6 and 12 followed the order Pb > Cr > Cu > Zn > Cd; Pb > Cr > Cu > Cd > Zn and Cd > Cr > Cu > Pb > Zn, respectively. The adsorption trends were analyzed in relation to point of zero charge and ξ-potential and the metals ions speciation at different pH. These results will help better understand the feasibility of augmenting GAC with natural clay minerals during fixed bed column test which is more beneficial for practical industrial applications.


Assuntos
Silicatos de Alumínio/química , Carvão Vegetal/química , Metais Pesados/química , Poluentes da Água/química , Água/química , Adsorção , Argila
12.
Artigo em Inglês | MEDLINE | ID: mdl-28934127

RESUMO

Due to their industrial relevance, phenolic compounds (PC) are amongst the most common organic pollutants found in many industrial wastewater effluents. The potential detrimental health and environmental impacts of PC necessitate their removal from wastewater to meet regulatory discharge standards to ensure meeting sustainable development goals. In recent decades, one of the promising, cost-effective and environmentally benign techniques for removal of PC from water streams has been adsorption onto sewage sludge (SS)-based activated carbon (SBAC). This is attributed to the excellent adsorptive characteristics of SBAC and also because the approach serves as a strategy for sustainable management of huge quantities of different types of SS that are in continual production globally. This paper reviews conversion of SS into activated carbons and their utilization for the removal of PC from water streams. Wide ranges of topics which include SBAC production processes, physicochemical characteristics of SBAC, factors affecting PC adsorption onto SBAC and their uptake mechanisms as well as the regeneration potential of spent SBAC are covered. Although chemical activation techniques produce better SBAC, yet more research work is needed to harness advances in material science to improve the functional groups and textural properties of SBAC as well as the low performance of physical activation methods. Studies focusing on PC adsorptive performance on SBAC using continuous mode (that are more relevant for industrial applications) in both single and multi-pollutant aqueous systems to cover wide range of PC are needed. Also, the potentials of different techniques for regeneration of spent SBAC used for adsorption of PC need to be assessed in relation to overall economic evaluation within realm of environmental sustainability using life cycle assessment.


Assuntos
Carvão Vegetal/química , Fenóis/química , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Adsorção
13.
J Sep Sci ; 38(10): 1741-8, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25755180

RESUMO

An automated dispersive liquid-liquid microextraction integrated with gas chromatography and mass spectrometric procedure was developed for the determination of three N-nitrosamines (N-nitroso-di-n-propylamine, N-nitrosopiperidine, and N-nitroso di-n-butylamine) in water samples. Response surface methodology was employed to optimize relevant extraction parameters including extraction time, dispersive solvent volume, water sample pH, sodium chloride concentration, and agitation (stirring) speed. The optimal dispersive liquid-liquid microextraction conditions were 28 min of extraction time, 33 µL of methanol as dispersive solvent, 722 rotations per minute of agitation speed, 23% w/v sodium chloride concentration, and pH of 10.5. Under these conditions, good linearity for the analytes in the range from 0.1 to 100 µg/L with coefficients of determination (r(2) ) from 0.988 to 0.998 were obtained. The limits of detection based on a signal-to-noise ratio of 3 were between 5.7 and 124 ng/L with corresponding relative standard deviations from 3.4 to 5.9% (n = 4). The relative recoveries of N-nitroso-di-n-propylamine, N-nitrosopiperidine, and N-nitroso di-n-butylamine from spiked groundwater and tap water samples at concentrations of 2 µg/L of each analyte (mean ± standard deviation, n = 3) were (93.9 ± 8.7), (90.6 ± 10.7), and (103.7 ± 8.0)%, respectively. The method was applied to determine the N-nitrosamines in water samples of different complexities, such as tap water, and groundwater, before and after treatment, in a local water treatment plant.

14.
ScientificWorldJournal ; 2013: 346910, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24235885

RESUMO

In situ remediation technologies for contaminated soils are faced with significant technical challenges when the contaminated soil has low permeability. Popular traditional technologies are rendered ineffective due to the difficulty encountered in accessing the contaminants as well as when employed in settings where the soil contains mixed contaminants such as petroleum hydrocarbons, heavy metals, and polar organics. In this study, an integrated in situ remediation technique that couples electrokinetics with adsorption, using locally produced granular activated carbon from date palm pits in the treatment zones that are installed directly to bracket the contaminated soils at bench-scale, is investigated. Natural saline-sodic soil, spiked with contaminant mixture (kerosene, phenol, Cr, Cd, Cu, Zn, Pb, and Hg), was used in this study to investigate the efficiency of contaminant removal. For the 21-day period of continuous electrokinetics-adsorption experimental run, efficiency for the removal of Zn, Pb, Cu, Cd, Cr, Hg, phenol, and kerosene was found to reach 26.8, 55.8, 41.0, 34.4, 75.9, 92.49, 100.0, and 49.8%, respectively. The results obtained suggest that integrating adsorption into electrokinetic technology is a promising solution for removal of contaminant mixture from saline-sodic soils.


Assuntos
Metais Pesados/isolamento & purificação , Compostos Orgânicos/isolamento & purificação , Poluentes do Solo/isolamento & purificação , Solo/química , Adsorção/efeitos da radiação , Biodegradação Ambiental , Campos Eletromagnéticos , Concentração de Íons de Hidrogênio , Cinética , Metais Pesados/química , Metais Pesados/efeitos da radiação , Compostos Orgânicos/química , Compostos Orgânicos/efeitos da radiação , Poluentes do Solo/química , Poluentes do Solo/efeitos da radiação
15.
ScientificWorldJournal ; 2013: 618495, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24459439

RESUMO

In this study, an integrated in situ remediation technique which couples electrokinetics with adsorption, using locally produced granular activated carbon from date palm pits in the treatment zones that are installed directly to bracket the contaminated soils at bench-scale, is investigated. Natural saline-sodic clay soil, spiked with contaminant mixture (kerosene, phenol, Cr, Cd, Cu, Zn, Pb, and Hg), was used in this study to investigate the effects of voltage gradient, initial contaminant concentration, and polarity reversal rate on the soil electrical conductivity. Box-Behnken Design (BBD) was used for the experimental design and response surface methodology (RSM) was employed to model, optimize, and interpret the results obtained using Design-Expert version 8 platform. The total number of experiments conducted was 15 with voltage gradient, polarity reversal rate, and initial contaminant concentration as variables. The main target response discussed in this paper is the soil electrical conductivity due to its importance in electrokinetic remediation process. Responses obtained were fitted to quadratic models whose R (2) ranges from 84.66% to 99.19% with insignificant lack of fit in each case. Among the investigated factors, voltage gradient and initial contaminant concentration were found to be the most significant influential factors.


Assuntos
Metais/química , Metais/isolamento & purificação , Poluentes do Solo/química , Poluentes do Solo/isolamento & purificação , Solo/química , Adsorção/efeitos da radiação , Biodegradação Ambiental/efeitos da radiação , Simulação por Computador , Condutividade Elétrica , Campos Eletromagnéticos , Concentração de Íons de Hidrogênio/efeitos da radiação , Cinética , Metais/efeitos da radiação , Modelos Químicos , Poluentes do Solo/efeitos da radiação , Integração de Sistemas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA