Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Enzyme Microb Technol ; 179: 110473, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38917734

RESUMO

Xylanases have broad applications in the food industry to decompose the complex carbohydrate xylan. This is applicable to enhance juice clarity, improve dough softness, or reduce beer turbidity. It can also be used to produce prebiotics and increase the nutritional value in foodstuff. However, the low yield and poor stability of most natural xylanases hinders their further applications. Therefore, it is imperative to explore higher-quality xylanases to address the potential challenges that appear in the food industry and to comprehensively improve the production, modification, and utilization of xylanases. Xylanases, due to their various sources, exhibit diverse characteristics that affect production and activity. Most fungi are suitable for solid-state fermentation to produce xylanases, but in liquid fermentation, microbial metabolism is more vigorous, resulting in higher yield. Fungi produce higher xylanase activity, but bacterial xylanases perform better than fungal ones under certain extreme conditions (high temperature, extreme pH). Gene and protein engineering technology helps to improve the production efficiency of xylanases and enhances their thermal stability and catalytic properties.


Assuntos
Endo-1,4-beta-Xilanases , Fermentação , Indústria Alimentícia , Fungos , Endo-1,4-beta-Xilanases/metabolismo , Endo-1,4-beta-Xilanases/genética , Fungos/enzimologia , Fungos/genética , Bactérias/enzimologia , Bactérias/genética , Engenharia de Proteínas , Estabilidade Enzimática , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Xilanos/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética
2.
J Food Sci ; 89(7): 4136-4147, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38778561

RESUMO

Pear residue, a byproduct of pear juice extraction, is rich in soluble sugar, vitamins, minerals, and cellulose. This study utilized Monascus anka in liquid fermentation to extract dietary fiber (DF) from pear residue, and the structural and functional characteristics of the DF were analyzed. Soluble DF (SDF) content was increased from 7.9/100 g to 12.6 g/100 g, with a reduction of average particle size from 532.4 to 383.0 nm by fermenting with M. anka. Scanning electron microscopy and infrared spectroscopic analysis revealed more porous and looser structures in Monascus pear residue DF (MPDF). Water-, oil-holding, and swelling capacities of MPDF were also enhanced. UV-visible spectral analysis showed that the yield of yellow pigment in Monascus pear residue fermentation broth (MPFB) was slightly higher than that in the Monascus blank control fermentation broth. The citrinin content in MPFB and M. anka seed broth was 0.90 and 0.98 ug/mL, respectively. Therefore, liquid fermentation with M. anka improved the structural and functional properties of MPDF, suggesting its potential as a functional ingredient in food.


Assuntos
Fibras na Dieta , Fermentação , Monascus , Pyrus , Monascus/metabolismo , Monascus/química , Fibras na Dieta/análise , Pyrus/química , Pigmentos Biológicos/análise , Citrinina/análise , Frutas/química , Microscopia Eletrônica de Varredura , Tamanho da Partícula
3.
Heliyon ; 10(5): e27061, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38463789

RESUMO

Dendrobium officinale is an important traditional Chinese medicinal herb containing bioactive polysaccharides and alkaloids. This study characterized metabolite differences between jiaosu (fermented plant product) from Dendrobium flowers versus stems using untargeted metabolomics. The jiaosu was fermented by mixed fermentation of Saccharomyces cerevisiae, Lactobacillus bulgaricus and Streptococcus thermophilus. Liquid chromatography-mass spectrometry analysis identified 476 differentially expressed metabolites between the two Jiaosu products. Key results showed downregulation of flavonoid metabolism in Dendrobium Stems Edible Plant Jiaosu (SEP) but increased flavonoid synthesis in Dendrobium Flowers Edible Plant Jiaosu (FEP), likely an antioxidant response. SEP displayed upregulation of lignin metabolites with potential antioxidant properties. The findings demonstrate significant metabolite profile differences between SEP and FEP, providing the basis for developing functional jiaosu products targeting specific health benefits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA