RESUMO
Chimeric antigen receptor (CAR)-T cell therapy represents a breakthrough in treating resistant hematologic cancers. It is based on genetically modifying T cells transferred from the patient or a donor. Although its implementation has increased over the last few years, CAR-T has many challenges to be addressed, for instance, the associated severe toxicities, such as cytokine release syndrome. To model CAR-T cell dynamics, focusing on their proliferation and cytotoxic activity, we developed a mathematical framework using ordinary differential equations (ODEs) with Bayesian parameter estimation. Bayesian statistics were used to estimate model parameters through Monte Carlo integration, Bayesian inference, and Markov chain Monte Carlo (MCMC) methods. This paper explores MCMC methods, including the Metropolis-Hastings algorithm and DEMetropolis and DEMetropolisZ algorithms, which integrate differential evolution to enhance convergence rates. The theoretical findings and algorithms were validated using Python and Jupyter Notebooks. A real medical dataset of CAR-T cell therapy was analyzed, employing optimization algorithms to fit the mathematical model to the data, with the PyMC library facilitating Bayesian analysis. The results demonstrated that our model accurately captured the key dynamics of CAR-T cell therapy. This conclusion underscores the potential of parameter estimation to improve the understanding and effectiveness of CAR-T cell therapy in clinical settings.
RESUMO
The coexistence of superconductivity and ferromagnetism is a long-standing issue in superconductivity due to the antagonistic nature of these two ordered states. Experimentally identifying and characterizing novel heterointerface superconductors that coexist with magnetism presents significant challenges. Here, we report the observation of two-dimensional long-range ferromagnetic order in a KTaO3 heterointerface superconductor, showing the coexistence of superconductivity and ferromagnetism. Remarkably, our direct current superconducting quantum interference device measurements reveal an in-plane magnetization hysteresis loop persisting above room temperature. Moreover, first-principles calculations and X-ray magnetic circular dichroism measurements provide decisive insights into the origin of the observed robust ferromagnetism, attributing it to oxygen vacancies that localize electrons in nearby Ta 5d states. Our findings suggest KTaO3 heterointerfaces as time-reversal symmetry breaking superconductors, injecting fresh momentum into the exploration of the intricate interplay between superconductivity and magnetism enhanced by the strong spin-orbit coupling inherent to the heavy Ta in 5d orbitals.
RESUMO
Quantum Griffiths phase (QGP) is a novel quantum phenomenon of quantum phase transition in two-dimensional (2D) superconductors, and the emergence of inhomogeneous superconducting rare regions immersed in a metallic matrix is theoretically related to the quantum Griffiths singularity (QGS). However, the theoretical proposal of superconducting rare regions still lacks intuitive experimental verification. Here, we construct an artificial ordered superconducting-islands-array on monolayer graphene with the aid of an anodic aluminum oxide (AAO) membrane. The QGS under both in-plane and out-of-plane magnetic fields is evidenced by the divergent dynamical critical exponent and is in compliance with the direct activated scaling behavior. The phase diagram clearly shows that the QGP is indeed bred in the rare superconducting regions within isolated superconducting islands with a vanished quantum coherence. Our results reveal the universal features of QGP in artificial heterostructured systems and provide a visualized platform for the theoretical proposal of QGS.
RESUMO
Two-dimensional (2D) van der Waals single crystals with long-range magnetic order are the precondition and urgent task for developing a 2D spintronics device. In contrast to graphene and transition metal dichalcogenides, the study of 2D single-crystal metal oxides with intrinsic ferromagnetic properties remains a huge challenge. Here, we report a large-size trigonal single-crystal rhodium oxide (SC-Tri-RhO2), with crystal parameters of a = b = 3.074 Å, c = 6.116 Å, and a space group of P3Ì m1 (164), exhibiting strong ferromagnetism (FM) at a rather high temperature. Furthermore, theoretical calculations suggest that the ferromagnetism in SC-Tri-RhO2 originates from spin splitting near the Fermi level, and the total magnetic moment is contributed mainly by the Rh atom.
RESUMO
The density and spatial distribution of substituted dopants affect the transition metal dichalcogenides (TMDCs) materials properties. Previous studies have demonstrated that the density of dopants in TMDCs increases with the amount of doping, and the phenomenon of doping concentration difference between the nucleation center and the edge is observed, but the spatial distribution law of doping atoms has not been carefully studied. Here, it is demonstrated that the spatial distribution of dopants changes at high doping concentrations. The spontaneous formation of an interface with a steep doping concentration change is named concentration phase separation (CPS). The difference in the spatial distribution of dopants on both sides of the interface can be identified by an optical microscope. This is consistent with the results of spectral analysis and microstructure characterization of scanning transmission electron microscope. According to the calculation results of density functional theory, the chemical potential has two relatively stable energies as the doping concentration increases, which leads to the spontaneous formation of CPS. Understanding the abnormal phenomena is important for the design of TMDCs devices. This work has great significance in the establishment and improvement of the doping theory and the design of the doping process for 2D materials.
RESUMO
The quantum spin Hall (QSH) effect has attracted extensive research interest because of the potential applications in spintronics and quantum computing, which is attributable to two conducting edge channels with opposite spin polarization and the quantized electronic conductance of 2e2/h. Recently, 2M-WS2, a new stable phase of transition metal dichalcogenides with a 2M structure showing a layer configuration identical to that of the monolayer 1T' TMDs, was suggested to be a QSH insulator as well as a superconductor with a critical transition temperature of around 8 K. Here, high-resolution angle-resolved photoemission spectroscopy (ARPES) and spin-resolved ARPES are applied to investigate the electronic and spin structure of the topological surface states (TSS) in the superconducting 2M-WS2. The TSS exhibit characteristic spin-momentum-locking behavior, suggesting the existence of long-sought nontrivial Z2 topological states therein. We expect that 2M-WS2 with coexisting superconductivity and TSS might host the promising Majorana bound states.
RESUMO
In order to solve a series of problems with kelp drying including long drying time, high energy consumption, low drying efficiency, and poor quality of dried kelp, this work proposes the design of a novel greenhouse double-evaporator solar-assisted heat pump drying system. Experiments on kelp solar-assisted heat pump drying (S-HP) and heat pump drying (HP) under the condition of irradiance of 100-700 W/m2 and a temperature of 30, 40, or 50 °C were conducted and their results were compared in terms of system performance, drying kinetics, and quality impact. The drying time was reduced with increasing irradiance or temperature. The coefficient of performance (COP) and specific moisture extraction rate (SMER) of S-HP were 3.590-6.810, and 1.660-3.725 kg/kW·h, respectively, roughly double those of HP when the temperatures are identical. The Deff of S-HP and HP were 5.431 × 10-11~11.316 × 10-11 m2/s, and 1.037 × 10-11~1.432 × 10-11 m2/s, respectively; additionally, solar radiation greatly improves Deff. The Page model almost perfectly described the changes in the moisture ratio of kelp by S-HP and HP with an inaccuracy of less than 5%. When the temperature was 40 °C and the irradiance was above 400 W/m2, the drying time of S-HP was only 3 h, and the dried kelp maintained the green color with a strong flavor and richness in mannitol. Meanwhile, the coefficient of performance was 6.810, the specific moisture extraction rate was 3.725 kg/kWh, and the energy consumption was 45.2%, lower than that of HP. It can be concluded that S-HP is highly efficient and energy-saving for macroalgae drying and can serve as an alternate technique for the drying of other aquatic products.
RESUMO
The study of exotic superconductivity in two dimensions has been a central theme in the solid state and materials research communities. Experimentally exploring and identifying exotic, fascinating interface superconductors with a high transition temperature (Tc) are challenging. Here, we report an experimental observation of intriguing two-dimensional superconductivity with a Tc of up to 3.8 K at the interface between a Mott insulator Ti2O3 and polar semiconductor GaN. At the verge of superconductivity, we also observe a striking quantum metallic-like state, demonstrating that it is a precursor to the two-dimensional superconductivity as the temperature is decreased. Our work shows an exciting opportunity to exploit the underlying, emergent quantum phenomena at the heterointerfaces via heterostructure engineering.
RESUMO
This systematic review was conducted to identify, evaluate and characterize the overall progress of health economics research conducted for Africa. Health economics studies carried out from 1991 to 2020 for Africa were retrieved from the EconLit database using relevant searching strategies. According to the methodology of Preferred Reporting Items for Systematic Review and Meta-Analysis, qualified journal papers were included. Using bibliometrics, we ran a series of analyses on authorship, studied countries, affiliations, and countries of origin, journals, and research topics. A total of 2935 studies were screened, and 178 were included in this review. We observed that the determinants of illness is the most researched topics. The United States, World Bank, University of California Berkeley, are respectively the most influential countries, world organizations, and academic institutions in the field of health economics of Africa. HIV/AIDs is still the leading health issue in highly cited health economics studies in Africa. Health Policy and Planning is the most productive and academically influential journal, and Kenya is the most studied country by health economists among all African countries. African health systems are vulnerable compared to developed countries, as many of them are underfunded. The academic strength in Africa is much weaker than that of leading health economics counties. Even within the continent, the academic development and the attention it receives are uneven. More influential health economics studies of Africa should be published in addition to the disease focus of HIV/AIDS.
RESUMO
We report the critical current density (Jc) and vortex pinning properties in single crystals of a novel iron-based superconductor (IBS) KCa2Fe4As4F2 with large Jc in the pristine state, before and after introduction of artificial defects by swift-particle irradiation. The effects of 2.6 GeV U and 3 MeV proton irradiations in KCa2Fe4As4F2 single crystals on transition temperature Tc and Jc, including its dose dependence, are systematically studied. Jc~8 MA/cm2 under a self-field at 2 K in the pristine crystal is strongly enhanced up to 19.4 and 17.5 MA/cm2 by irradiation of 2.6 GeV U-ions and 3 MeV protons, respectively. Suppression of Tc and dose dependence of Jc in KCa2Fe4As4F2 is different from that in a representative IBS of (Ba,K)Fe2As2, which can be explained by considering the presence of embedded defects in pristine KCa2Fe4As4F2. The vortex dynamics in the pristine and proton irradiated KCa2Fe4As4F2 single crystals are also investigated from the analyses of the field dependence of Jc and the normalized magnetic relaxation rate. In addition to the contribution of embedded defects, weak collective pinning is considered for comprehensive analyses. Vortex dynamics in KCa2Fe4As4F2 is similar to those in (Ba,K)Fe2As2 to some extent, and different from that in anisotropic Li0.8Fe0.2OHFeSe. Large anisotropy, due to the presence of insulating blocking layers in KCa2Fe4As4F2, which leads to much lower irreversibility field (Hirr) compared with 122-type IBSs, strongly affect the vortex dynamics.
RESUMO
A magnetic field is generally considered to be incompatible with superconductivity as it tends to spin-polarize electrons and breaks apart the opposite-spin singlet superconducting Cooper pairs. Here, an experimental phenomenon is observed that an intriguing reemergent superconductivity evolves from a conventional superconductivity undergoing a hump-like intermediate phase with a finite electric resistance in the van der Waals heterointerface of layered NbSe2 and CrCl3 flakes. This phenomenon merely occurred when the applied magnetic field is parallel to the sample plane and perpendicular to the electric current direction as compared to the reference sample of a NbSe2 thin flake. The strong anisotropy of the reemergent superconducting phase is pointed to the nature of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state driven by the strong interfacial spin-orbit coupling between NbSe2 and CrCl3 layers. The theoretical picture of FFLO state nodes induced by Josephson vortices collectively pinning is presented for well understanding the experimental observation of the reemergent superconductivity. This finding sheds light on an opportunity to search for the exotic FFLO state in the van der Waals heterostructures with strong interfacial spin-orbit coupling.
RESUMO
Broadband infrared photodetectors based on two-dimensional (2D) materials which are the research focus in the infrared field, have wide applications in remote sensing, thermal imaging, and astronomy observation. In this article, the photodetector based on 2D ferromagnetic material CoSe is studied at room temperature, demonstrating the air-stable, broadband, and up to long wavelength properties. The CoSe material is applied to infrared photodetectors for the first time. The 2D material CoSe is synthesized by using the chemical vapor deposition method. The size of the as-grown CoSe is up to 71.8 µm. The photoresponse of the CoSe photodetector ranges from 450 nm to 10.6 µm. The photoresponsivity of this photodetector is up to 2.58 A W-1 under the 10.6 µm illumination at room temperature. This work provides a new material for broadband photodetector at room temperature and builds a bridge for the magnetoelectronic and broadband photoelectric fields.
RESUMO
Gastric cancer (GC) is one of the most common malignancies and its prognosis is extremely poor. This study identifies a novel oncogene, microfibrillar-associated protein 2 (MFAP2) in GC. With integrative reanalysis of transcriptomic data, we found MFAP2 as a GC prognosis-related gene. And the aberrant expression of MFAP2 was explored in GC samples. Subsequent experiments indicated that silencing and exogenous MFAP2 could affect motility of cancer cells. The inhibition of silencing MFAP2 could be rescued by another FAK activator, fibronectin. This process is probably through affecting the activation of focal adhesion process via modulating ITGB1 and ITGA5. MFAP2 regulated integrin expression through ERK1/2 activation. Silencing MFAP2 by shRNA inhibited tumorigenicity and metastasis in nude mice. We also revealed that MFAP2 is a novel target of microRNA-29, and miR-29/MFAP2/integrin α5ß1/FAK/ERK1/2 could be an important oncogenic pathway in GC progression. In conclusion, our data identified MFAP2 as a novel oncogene in GC and revealed that miR-29/MFAP2/integrin α5ß1/FAK/ERK1/2 could be an important oncogenic pathway in GC progression.
RESUMO
Recently, Bi2O2Se was revealed as a promising two-dimensional (2D) semiconductor for next generation electronics, due to its moderate bandgap size, high electron mobility and pronounced ambient stability. Meanwhile, it has been predicted that high-quality Bi2O2Se-related heterostructures may possess exotic physical phenomena, such as piezoelectricity and topological superconductivity. Herein, we report the first successful heteroepitaxial growth of Bi2O2Se films on SrTiO3 substrates via pulsed laser deposition (PLD) method. Films obtained under optimal conditions show an epitaxial growth with the c axis perpendicular to the film surface and the a and b axes parallel to the substrate. The growth mode transition to three-dimensional (3D) island from quasi-2D layer of the heteroepitaxial Bi2O2Se films on SrTiO3 (001) substrates is observed as prolonging deposition time of films. The maximum value of electron mobility reaches 160 cm2 V-1 s-1 at room temperature in a 70 nm thick film. The thickness dependent mobility provides evidence that interface-scattering is likely to be the limiting factor for the relatively low electron mobility at low temperature, implying that the interface engineering as an effective method to tune the low temperature electron mobility. Our work suggests the epitaxial Bi2O2Se films grown by PLD are promising for both fundamental study and practical applications.
RESUMO
Low-temperature specific heat (SH) is measured on the 1111-type CaFe0.88 Co0.12AsF single crystals under different magnetic fields. A clear SH jump with the height [Formula: see text] mJ mol-1 K-2 is observed at the superconducting transition temperature T c . The electronic SH coefficient [Formula: see text] increases linearly with the field below 5 T and a kink is observed around 5 T, indicating a multi-gap feature in the present system. Such a sign is also reflected in the T c - B data. A detailed analysis shows that this behavior can be interpreted in terms of a two-gap scenario with the ratio [Formula: see text]-4.5.
RESUMO
Recently the metastable 1T'-type VIB-group transition metal dichalcogenides (TMDs) have attracted extensive attention due to their rich and intriguing physical properties, including superconductivity, valleytronics physics, and topological physics. Here, a new layered WS2 dubbed "2M" WS2 , is constructed from 1T' WS2 monolayers, is synthesized. Its phase is defined as 2M based on the number of layers in each unit cell and the subordinate crystallographic system. Intrinsic superconductivity is observed in 2M WS2 with a transition temperature Tc of 8.8 K, which is the highest among TMDs not subject to any fine-tuning process. Furthermore, the electronic structure of 2M WS2 is found by Shubnikov-de Haas oscillations and first-principles calculations to have a strong anisotropy. In addition, topological surface states with a single Dirac cone, protected by topological invariant Z2 , are predicted through first-principles calculations. These findings reveal that the new 2M WS2 might be an interesting topological superconductor candidate from the VIB-group transition metal dichalcogenides.
RESUMO
The layered oxyselenides with the formula LnCrSe2O (Ln = Ce-Nd) were synthesized via molten salt methods. The isostructural compounds crystallize in the monoclinic space group of C2/m. The crystal structures feature ∞2[CrSe2O]3- motifs stacked along the a axis, which are separated by Ln3+ ions. The ∞2[CrSe2O]3- layers are composed of [Cr1Se6]9- and [Cr2Se4O2]9- octahedra via corner and edge sharing. Powder X-ray diffraction results confirm the phase purities of the as-synthesized compounds. LnCrSe2O (Ln = Ce-Nd) show typical antiferromagnetic ordering with TN = 125, 120, and 118 K, respectively. Heat capacity measurement for NdCrSe2O indicates that the Debye temperature is 278.4 K. Similar metal-to-semiconductor phase transitions were observed for LnCrSe2O (Ln = Ce-Nd) plates with transition temperatures of 115, 109, and 95 K, respectively. NdCrSe2O also possesses a magnetoresistance effect at low temperature (<25 K) with a significant positive magnetoresistance â¼ 16% at 2 K and 1 T.
RESUMO
The supply chain of shellfish is complex, with animals being subjected to several stressors during the depuration, temporary keeping, and waterless-low-temp transportation processing. In this paper, the recycled water system for depuration and temporary keeping was used to realize both depuration and temporary keeping of Patinopecten yessoensis. The samples were divided into three groups based on three different pre-process involved: samples in group 1 were depurated for 48 hr straight, whereas those in group 2 were first depured for 24 hr and then cooled for 24 hr; samples in group 3 was directly kept in a polyethylene insulation box. Then group 1 and group 2 were transported in a 3L polyethylene insulation box with ice packs (250 ml) to study the quality of transport based on the different pre-process. As a result, in group 1 (depuration for 48 hr), the first death occurred after 56 hr, and all shellfishes died after 102 hr with total bacterial density of 2,630 CFU/ml. In group 2 (depuration for 24 hr and temporary keeping for 24 hr), the first death occurred after 104 hr and the total number of bacteria was increasing steadily within 0-104 hr. After 120 hr, all shellfishes died with total bacterial density of 1,090 CFU/ml. In group 3 (directly transport), all shellfishes died in 64 hr. The total number of bacteria in groups 1 and 2 declined significantly in the depuration process. The bacteria number (p < 0.05) in group 3 was significantly different from that in groups 1 and 2. The crude protein, crude fat, and glycogen of all groups declined. However, compared to groups 1 and 3, the consumption of glycogen in group 2 (p < 0.05) was delayed by the gradual cooling procedure. Those results prove that the depuration and temporary keeping procedures can improve the sterilization of the bacteria. The survival rate is less sensitive to the temperature change. The results provide satisfactory references for the P. yessoensis' quality studies with depuration, temporary keeping, and waterless-low-temp transportation technologies.
RESUMO
In order to provide reference for the development of relevant dredging and processing machinery of the manila clam (Ruditapes philippinarum), the clam shell´s microstructure, phase composition, microhardness, nanoindentation hardness and elastic modulus were investigated, the quasi static compression and orthogonal compression tests of live clams were carried out as well. The shell consists of the outer, middle, and inner layer, which correspond with the composite prismatic structure, crossed-lamellar structure, and homogeneous structure, respectively. X-ray diffraction (XRD) results indicated that all the three layers are made up of pure aragonite phase, the outer layer of the shell displays greater intensity and more diffraction peaks than the middle and inner layer. The microhardness of the inner layer, ~ 3.00â¯GPa, is harder than the middle and outer layer. Both in the middle and outer layers, the microhardnesses of the vertical section perpendicular to the growth lines are obviously higher than that of the cross section parallel to the growth lines. The similar trend was observed in nanoindentation hardness (H) and elastic modulus (E), but the H/E ratios between three layers and two sections are close to 0.05. The quasi static compressive strengths of live clams with loading along the X (beak horizontal), Y (beak upward and umbo downward), and Z (beak vertical) orientations were tested, and the differences were identified. The lowest strength was found with loading orientation Z, the Weibull strength at 50% probabilities of fracture force is just 153â¯N. The results of the orthogonal compression tests demonstrated that the fracture force of clams varies from approximately 100â¯N to 400â¯N, the effect of the clams´â¯age on fracture force is more significant (pâ¯<â¯0.01) than loading orientation and loading speed. Therefore, the clams´â¯age and ultimate load of fracture should be taken into account during clam production mechanization, for the purpose of maintaining the clams´ integrity and survival prior to sale.
Assuntos
Exoesqueleto , Bivalves/anatomia & histologia , Fenômenos Mecânicos , Animais , Fenômenos Biomecânicos , Força Compressiva , Módulo de Elasticidade , DurezaRESUMO
2H MoS2 has been intensively studied because of its layer-dependent electronic structures and novel physical properties. Though the metastable 1T MoS2 with a [MoS6 ] octahedron was observed over the microscopic area, the true crystal structure of 1T phase has not been strictly determined. Moreover, the true physical properties have not been demonstrated from experiments owing to the challenge for the preparation of pure 1T MoS2 crystals. 1T MoS2 single crystals were successfully synthesized and the crystal structure of 1T MoS2 re-determined from single-crystal X-ray diffraction. 1T MoS2 crystallizes in the space group P3â¾ m1 with a cell of a=b=3.190(3)â Å and c=5.945(6)â Å. The individual MoS2 layer consists of MoS6 octahedra sharing edges with each other. More surprisingly, the bulk 1T MoS2 crystals undergo a superconducting transition of Tc =4â K, which is the first observation of superconductivity in pure 1T MoS2 phase.