Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Expert Rev Anti Infect Ther ; 21(12): 1365-1371, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37855094

RESUMO

OBJECTIVES: By the end of 2022, China had made a pivotal decision to optimize the COVID-19 policy. The dominant Omicron variant in China at that time was highly transmissible. In this study, we aimed to evaluate the real-world safety and efficacy of tixagevimab and cilgavimab against this background in China. METHODS: Participants were enrolled if they were over 12 years old and were planning to receive tixagevimab or cilgavimab. All participants received intramuscular administration of tixagevimab (150 mg) and cilgavimab (150 mg). Data were collected on demographics, underlying illness, prior infection, vaccination, adverse events, and COVID-19 outcomes (e.g., infection rate, hospitalization rate, and severe disease). RESULTS: During the study period, 168 (37.9%) of 443 who received tixagevimab/cilgavimab were diagnosed with SARS-CoV-2 infection. All infected patients had mild COVID-19. Two patients (0.5%) were hospitalized for COVID-19, but none of them were admitted to the ICU. None of the patients died during this study. 4 (0.9%) reported mild local adverse events, and no severe systemic adverse reactions were reported. CONCLUSION: Tixagevimab/cilgavimab may have protected high-risk populations against infection with the Omicron variant, hospitalization and severe disease during the China COVID-19 pandemic.


Assuntos
COVID-19 , Profilaxia Pré-Exposição , Humanos , Criança , Pandemias , COVID-19/prevenção & controle , China/epidemiologia , Surtos de Doenças
2.
Int J Biol Macromol ; 236: 123936, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36894064

RESUMO

Recently, ionic conductive hydrogels have attracted extensive attention in the field of flexible pressure sensors due to their mechanical flexibility and high conductivity. However, the trade-off between the high electrical and mechanical properties of ionic conductive hydrogels and the loss of mechanical and electrical properties of traditional high water content hydrogels at low temperature are still the main hurdles in this area. Herein, a rigid Ca-rich silkworm excrement cellulose (SECCa) extracted from silkworm breeding waste was prepared. SEC-Ca was combined with the flexible hydroxypropyl methylcellulose (HPMC) molecules through hydrogen bonding and double ionic bonds of Zn2+ and Ca2+ to obtain the physical network SEC@HPMC-(Zn2+/Ca2+). Then, the covalently cross-linked network of polyacrylamide (PAAM) and the physical network were cross-linked by hydrogen bonding to obtain the physical-chemical double cross-linked hydrogel (SEC@HPMC-(Zn2+/Ca2+)/PAAM). The hydrogel showed excellent compression properties (95 %, 4.08 MPa), high ionic conductivity (4.63 S/m at 25 °C) and excellent frost resistance (possessing ionic conductivity of 1.20 S/m at -70 °C). Notably, the hydrogel can monitor pressure changes in a wide temperature range (-60-25 °C) with high sensitivity, stability and durability. This newly fabricated hydrogel-based pressure sensors can be deemed of great prospects for large-scale application of pressure detection at ultra-low temperatures.


Assuntos
Bombyx , Celulose , Animais , Hidrogéis , Condutividade Elétrica , Derivados da Hipromelose , Íons
3.
Plants (Basel) ; 11(20)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36297795

RESUMO

Soil salinity is a major constraint adversely affecting agricultural crops including wheat worldwide. The use of plant growth promoting rhizobacteria (PGPR) to alleviate salt stress in crops has attracted the focus of many researchers due to its safe and eco-friendly nature. The current study aimed to study the genetic potential of high halophilic Bacillus strains, isolated from the rhizosphere in the extreme environment of the Qinghai-Tibetan plateau region of China, to reduce salt stress in wheat plants. The genetic analysis of high halophilic strains, NMCN1, LLCG23, and moderate halophilic stain, FZB42, revealed their key genetic features that play an important role in salt stress, osmotic regulation, signal transduction and membrane transport. Consequently, the expression of predicted salt stress-related genes were upregulated in the halophilic strains upon NaCl treatments 10, 16 and 18%, as compared with control. The halophilic strains also induced a stress response in wheat plants through the regulation of lipid peroxidation, abscisic acid and proline in a very efficient manner. Furthermore, NMCN1 and LLCG23 significantly enhanced wheat growth parameters in terms of physiological traits, i.e., fresh weight 31.2% and 29.7%, dry weight 28.6% and 27.3%, shoot length 34.2% and 31.3% and root length 32.4% and 30.2%, respectively, as compared to control plants under high NaCl concentration (200 mmol). The Bacillus strains NMCN1 and LLCG23 efficiently modulated phytohormones, leading to the substantial enhancement of plant tolerance towards salt stress. Therefore, we concluded that NMCN1 and LLCG23 contain a plethora of genetic features enabling them to combat with salt stress, which could be widely used in different bio-formulations to obtain high crop production in saline conditions.

4.
Front Plant Sci ; 13: 994902, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36119605

RESUMO

Soil salinity is a major environmental stress that has been negatively affecting the growth and productivity of rice. However, various salt-resistant plant growth-promoting rhizobacteria (PGPR) have been known to promote plant growth and alleviate the damaging effects of salt stress via mitigating physio-biochemical and molecular characteristics. This study was conducted to examine the salt stress potential of Bacillus strains identified from harsh environments of the Qinghai-Tibetan plateau region of China. The Bacillus strains NMTD17, GBSW22, and FZB42 were screened for their response under different salt stress conditions (1, 4, 7, 9, 11, 13, and 16%). The screening analysis revealed strains NMTD17, GBSW22, and FZB42 to be high-salt tolerant, moderate-salt tolerant, and salt-sensitive, respectively. The NMTD17 strain produced a strong biofilm, followed by GBSW22 and FZB42. The expression of salt stress-related genes in selected strains was also analyzed through qPCR in various salt concentrations. Further, the Bacillus strains were used in pot experiments to study their growth-promoting ability and antioxidant activities at various concentrations (0, 100, 150, and 200 mmol). The analysis of growth-promoting traits in rice exhibited that NMTD17 had a highly significant effect and GSBW22 had a moderately significant effect in comparison with FZB42. The highly resistant strain NMTD17 that stably promoted rice plant growth was further examined for its function in the composition of rhizobacterial communities. The inoculation of NMTD17 increased the relative abundance and richness of rhizobacterial species. These outcomes propose that NMTD17 possesses the potential of PGPR traits, antioxidants enzyme activities, and reshaping the rhizobacterial community that together mitigate the harmful effects of salinity in rice plants.

5.
Int J Mol Sci ; 23(15)2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35897765

RESUMO

The plant parasitic nematode, Aphelenchoides besseyi, is a serious pest causing severe damage to various crop plants and vegetables. The Bacillus thuringiensis (Bt) strains, GBAC46 and NMTD81, and the biological strain, FZB42, showed higher nematicidal activity against A. besseyi, by up to 88.80, 82.65, and 75.87%, respectively, in a 96-well plate experiment. We screened the whole genomes of the selected strains by protein-nucleic acid alignment. It was found that the Bt strain GBAC46 showed three novel crystal proteins, namely, Cry31Aa, Cry73Aa, and Cry40ORF, which likely provide for the safe control of nematodes. The Cry31Aa protein was composed of 802 amino acids with a molecular weight of 90.257 kDa and contained a conserved delta-endotoxin insecticidal domain. The Cry31Aa exhibited significant nematicidal activity against A. besseyi with a lethal concentration (LC50) value of 131.80 µg/mL. Furthermore, the results of in vitro experiments (i.e., rhodamine and propidium iodide (PI) experiments) revealed that the Cry31Aa protein was taken up by A. besseyi, which caused damage to the nematode's intestinal cell membrane, indicating that the Cry31Aa produced a pore-formation toxin. In pot experiments, the selected strains GBAC46, NMTD81, and FZB42 significantly reduced the lesions on leaves by up to 33.56%, 45.66, and 30.34% and also enhanced physiological growth parameters such as root length (65.10, 50.65, and 55.60%), shoot length (68.10, 55.60, and 59.45%), and plant fresh weight (60.71, 56.45, and 55.65%), respectively. The number of nematodes obtained from the plants treated with the selected strains (i.e., GBAC46, NMTD81, and FZB42) and A. besseyi was significantly reduced, with 0.56, 0.83., 1.11, and 5.04 seedling mL-1 nematodes were achieved, respectively. Moreover, the qRT-PCR analysis showed that the defense-related genes were upregulated, and the activity of hydrogen peroxide (H2O2) increased while malondialdehyde (MDA) decreased in rice leaves compared to the control. Therefore, it was concluded that the Bt strains GBAC46 and NMTD81 can promote rice growth, induce high expression of rice defense-related genes, and activate systemic resistance in rice. More importantly, the application of the novel Cry31Aa protein has high potential for the efficient and safe prevention and green control of plant parasitic nematodes.


Assuntos
Bacillus thuringiensis , Oryza , Rabditídios , Tylenchida , Animais , Antinematódeos/metabolismo , Antinematódeos/farmacologia , Bacillus thuringiensis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/farmacologia , Peróxido de Hidrogênio/metabolismo , Oryza/metabolismo , Plantas/metabolismo , Rabditídios/metabolismo , Tylenchida/metabolismo
6.
ACS Nano ; 7(9): 8051-8, 2013 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-23937164

RESUMO

The increasing interest in future energy storage technologies has generated the urgent need for alternative rechargeable magnesium ion batteries due to their innate merits in terms of raw abundance, theoretical capacity, and operational safety. Herein, we report an alternative pathway to a new energy storage regime: toward advanced rechargeable magnesium-ion batteries based on WSe2 nanowire-assembled film cathodes. The as-grown electrodes delivered efficient Mg(2+) intercalation/insertion activity, excellent cycling life, enhanced specific capacity, and excellent rate capability. We also evaluated the influence of Mg-intercalation behavior on Mg-ion batteries based on WSe2 film cathodes via the first-principles DFT computations. The results reveal the feasibility of using advanced magnesium-ion batteries based on WSe2 film as energy storage components in next-generation optoelectronic systems.

7.
Opt Express ; 20(22): 24411-7, 2012 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-23187204

RESUMO

Highly efficient blue phosphorescent organic light-emitting diodes (PhOLEDs) with a multiple quantum well (MQW) structure were investigated. A peak external quantum efficiency (EQE) of 20.31%, current efficiency of 40.31 cd/A and power efficiency of 30.14 lm/W were achieved in the optimized device with two quantum wells (QWs). The obtained efficiencies are much higher than those of the control devices without QWs. More importantly, the MQW devices exhibit low efficiency roll-off. At a high luminance of 5000 cd/m(2), the EQE still keeps at a high value of 18.86% in the optimized MQW device, and the efficiency roll-off is only 7.14%, which is lower than that of 30.78% in the control device (reduced from 16.05% to 11.11%). Meanwhile, the maximum power efficiency of the optimized MQW device was also exhibited more than 54.80% improvement compared to the control device. The high efficiency and low efficiency roll-off are attributed to the effective confinement of charge carriers and excitons by the state-of-the-art MQWs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA