Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Nanomedicine ; 18: 1777-1791, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37041816

RESUMO

Introduction: A limitation of hemoglobin-based oxygen carriers (HBOCs) as oxygen therapeutics is unpolymerized hemoglobin, which induces vasoconstriction leading to hypertension. The removal of unpolymerized hemoglobin from polymerized hemoglobin (PolyHb) is complex, expensive, and time-consuming. Methods: Herein, we developed a method to completely polymerize hemoglobin almost without unpolymerized hemoglobin. Hemoglobin was adsorbed on the anion-exchange resin Q Sepharose Fast Flow or DEAE Sepharose Fast Flow, and acetal, a crosslinker prepared from glutaraldehyde and ethylene glycol, was employed to polymerize the hemoglobin. The polymerization conditions, including reaction time, pH, resin type, and molar ratios of glutaraldehyde to ethylene glycol and hemoglobin to acetal, were optimized. The blood pressure and blood gas of mice injected with PolyHb were monitored as well. Results: The optimal polymerization condition of PolyHb was when the molar ratio of glutaraldehyde to ethylene glycol was 1:20, and the molar ratio of 10 mg/mL hemoglobin adsorbed on anion-exchange resin to glutaraldehyde was 1:300 for 60 min. Under optimized reactive conditions, hemoglobin was almost completely polymerized, with <1% hemoglobin remaining unpolymerized, and the molecular weight of PolyHb was more centrally distributed. Furthermore, hypertension was not induced in mice by PolyHb, and there were also no pathological changes observed in arterial oxygen, blood gas, electrolytes, and some metabolic indicators. Conclusion: The findings of this study indicate that the use of solid-phase polymerization and acetal is a highly effective and innovative approach to HBOCs, resulting in the almost completely polymerized hemoglobin. These results offer promising implications for the development of new methods for preparing HBOCs.


Assuntos
Acetais , Oxigênio , Animais , Camundongos , Oxigênio/metabolismo , Glutaral/química , Polimerização , Sefarose , Hemoglobinas/metabolismo , Etilenoglicóis , Ânions
2.
Curr Issues Mol Biol ; 44(6): 2683-2694, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35735624

RESUMO

Excessive reactive oxygen species (ROS), a highly reactive substance that contains oxygen, induced by ultraviolet A (UVA) cause oxidative damage to skin. We confirmed that hemin can catalyze the reaction of tyrosine (Tyr) and hydrogen peroxide (H2O2). Catalysis was found to effectively reduce or eliminate oxidative damage to cells induced by H2O2 or UVA. The scavenging effects of hemin for other free-radical ROS were also evaluated through pyrogallol autoxidation, 1,1-diphenyl-2-picrylhydrazyl radical (DPPH·)-scavenging assays, and phenanthroline-Fe2+ assays. The results show that a mixture of hemin and tyrosine exhibits strong scavenging activities for H2O2, superoxide anion (O2-·), DPPH·, and the hydroxyl radical (·OH). Furthermore, the inhibition of oxidative damage to human skin keratinocyte (HaCaT) cells induced by H2O2 or UVA was evaluated. The results show that catalysis can significantly reduce the ratio of cell apoptosis and death and inhibit the release of lactate dehydrogenase (LDH), as well as accumulation of malondialdehyde (MDA). Furthermore, the resistance to apoptosis was found to be enhanced. These results show that the mixture of hemin and tyrosine has a significantly protective effect against oxidative damage to HaCaT cells caused by UVA, suggesting it as a protective agent for combating UVA damage.

3.
Artif Organs ; 45(10): 1229-1239, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34101875

RESUMO

Oxidative damage caused by the ferryl hemoglobin is one of the major clinical adverse reactions of hemoglobin-based oxygen carriers (HBOCs), while the production of reactive oxygen species in a pathological state can oxidize hemoglobin (HbFe2+ ) to ferryl Hb, which can then enter the pseudoperoxidase cycle, making hemoglobin highly toxic. In this study, we found that ferrous hemoglobin and polymerized porcine hemoglobin (one of the HBOCs) have the peroxidase activity different from the pseudoperoxidase activity of ferric hemoglobin. Ferrous hemoglobin can catalyze the reaction of tyrosine (Tyr) with hydrogen peroxide. In addition, the results also indicated that ferrous hemoglobin and pPolyHb have a strong inhibitory effect on the pseudoperoxidase activity of ferric hemoglobin. Therefore, hydrogen peroxide was consumed in a large amount, which greatly prevented hemoglobin from becoming oxidized and entering the pseudoperoxidase cycle, thus inhibiting ferryl Hb toxicity. We further cultured human umbilical vein endothelial cells and monitored cell morphology, viability, cell cycle, apoptosis, lactate dehydrogenase (LDH) release, and malondialdehydes (MDAs) formation when incubated with H2 O2 , Tyr, and HbFe2+ . HbFe2+ and pPolyHb reduced cell cycle arrest, apoptosis, LDH release, and MDA formation. These results showed that reducing oxidative damage induced by H2 O2 and converted hemoglobin from a molecule that is toxic to one that inhibits oxidative damage, suggesting a new strategy for development of a safer HBOCs.


Assuntos
Substitutos Sanguíneos/química , Substitutos Sanguíneos/farmacologia , Hemoglobinas/farmacologia , Peróxido de Hidrogênio/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Hemoglobinas/química , Células Endoteliais da Veia Umbilical Humana , Humanos , Peróxido de Hidrogênio/metabolismo , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Peroxidases/química , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA