Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 71(1): 857-866, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36562196

RESUMO

Reproducibility and stability are important indicators for the evaluation of quantitative sensing methods based on surface-enhanced Raman scattering (SERS) technology. Developing a SERS substrate with self-calibration capabilities is vital for effectively quantifying targets. In this work, a competitive ratiometric SERS aptasensor was developed. 4-Aminothiophenol as an internal standard (IS) was embedded in the substrate followed by gradually loading with the aptamer and methylene blue functionalizing of the complementary sequences of the aptamer (MB-cDNA). Recognition and binding of the target to the aptamer resulted in the shedding of MB-cDNA after magnetic separation reducing the SERS signal of MB, allowing for the ratiometric determination of the target based on the constant intensity from the IS. For the selective detection of okadaic acid (OA), a good negative correlation was achieved between the SERS ratiometric intensity and OA concentration in the range of 0.5-100 ng/mL. The magnetic separation strategy effectively simplifies the production steps of the aptasensor, and the ratiometric strategy effectively improved the reproducibility and stability of the OA sensing. This ratiometric aptasensor has been successfully employed to detect OA in food and environmental samples and is expected to be extended to detect other targets.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanopartículas Metálicas , Aptâmeros de Nucleotídeos/química , DNA Complementar , Nanopartículas Metálicas/química , Análise Espectral Raman/métodos , Reprodutibilidade dos Testes , Ouro/química , Limite de Detecção
2.
Meat Sci ; 177: 108507, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33770715

RESUMO

Rapid, sensitive and on-site monitoring of meat spoilage is highly essential for food safety. Hydrogen sulfide (H2S) a typical volatile, produced during enzymatic hydrolysis is considered as a reliable marker for evaluating meat freshness. Herein, a novel nano-bionic sensor based on the superior catalytic activity of ruthenium nanoparticles (Ru NPs) has been fabricated for H2S quantification. The activity sites of Ru NPs were poisoned in the presence of H2S, thereby affecting its catalytic efficiency via reducing the degradation of azo dye. The developed nano-bionic sensor achieved a selective response toward H2S, with capability for on-site surveillance of the pork freshness in the linear range (0-1800 nM). A higher correlation was obtained between the H2S content and the total viable count during the 9-period pork spoilage process (R2 = 0.9633 and 0.9769). Moreover, the proposed method exhibits high selectivity in the presence of other characteristic volatiles encountered during the pork storage process.


Assuntos
Sulfeto de Hidrogênio/análise , Carne de Porco/análise , Rutênio/química , Compostos Azo , Carga Bacteriana , Colorimetria , Microbiologia de Alimentos/métodos , Armazenamento de Alimentos , Nanopartículas Metálicas , Carne de Porco/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA