Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Mol Model ; 29(12): 367, 2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37950076

RESUMO

CONTEXT: BTK is a critical regulator involved in the proliferation, differentiation, and apoptosis of B cells. BTK inhibitors can effectively alleviate various diseases such as tumors, leukemia, and asthma. During this study, a range of novel BTK inhibitors were designed using 3D-QSAR, molecular docking, and molecular dynamics (MD) simulation. METHODS: We selected 41 pyrrolopyrimidine derivatives as BTK inhibitors to structure a 3D-QSAR model. Comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) were adopted to research the connection between the pharmacological activities and chemical structures of the compounds. The CoMFA model (q2 = 0.519, R2 = 0.971), CoMSIA model (q2 = 0.512, R2 = 0.990), and external validation demonstrated excellent predictive performance and reliability of the 3D-QSAR model. We designed eight novel molecules with higher inhibitory activities according to the three-dimensional equipotential fields and explored the interactions between the compounds and BTK by molecular docking, which showed that the novel molecules had higher binding affinities with BTK than the template molecule 18. Then, the results of molecular docking were further verified by MD simulation, which showed that amino acid residues such as Leu528, Val416, and Met477 played vital parts in the interaction, and the binding free energy analysis showed that the novel molecules had higher stability with BTK. Finally, the ADME/T properties were predicted for all of the novel compounds, and the results showed that the majority of them had favorable pharmacokinetic properties. Therefore, this study provides strong support for the development of novel BTK inhibitors.


Assuntos
Simulação de Dinâmica Molecular , Pirimidinas , Simulação de Acoplamento Molecular , Reprodutibilidade dos Testes , Pirimidinas/farmacologia , Relação Quantitativa Estrutura-Atividade
2.
J Am Chem Soc ; 145(6): 3774-3785, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36724200

RESUMO

Stereochemically defined trisubstituted alkenes with a bromide and a methyl group at a terminus can be readily and stereoretentively derivatized through catalytic cross-coupling, affording unsaturated fragments found in many bioactive natural products. A direct method for generating such entities would be by stereocontrolled catalytic cross-metathesis (CM). Such methods are scarce however. Here, we present a stereoretentive strategy for CM between tri-, Z- or E-di, or monosubstituted olefins and Z- or E-2-bromo-2-butene, affording an assortment of E- or Z-trisubstituted alkenyl bromides. The majority of the transformations were catalyzed by two Mo monoaryloxide pyrrolide (MAP) complexes, one purchasable and the other accessible by well-established protocols. Substrates, such as feedstock trisubstituted olefins, can be purchased; the alkenyl bromide reagents are commercially available or can be prepared in two steps in a multigram scale. The catalytic process can be used to generate products that contain polar moieties, such as an amine or an alcohol, or sterically hindered alkenes that are α- or ß-branched. The utility of the approach is highlighted by a brief and stereocontrolled synthesis of an unsaturated fragment of phomactin A and a concise total synthesis of ambrein. An unexpected outcome of these investigations was the discovery of a new role for the presence of a small-molecule alkene in an olefin metathesis reaction. DFT studies indicate that this additive swiftly reacts with a short-lived Mo alkylidene and probably helps circumvent the formation of catalytically inactive square pyramidal metallacyclobutanes, enhancing the efficiency of a transformation.


Assuntos
Alcenos , Brometos , Estereoisomerismo , Alcenos/química , Indicadores e Reagentes , Catálise
3.
J Am Chem Soc ; 145(6): 3748-3762, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36720176

RESUMO

Catalytic cross-metathesis (CM) reactions that can generate trisubstituted alkenes in high stereoisomeric purity are important but remain limited in scope. Here, CM reactions are introduced that generate Z-trisubstituted α-methyl, α,ß-unsaturated, alkyl and aryl esters, thiol esters, and acid fluorides. Transformations are promoted by a Mo bis-aryloxide, a monoaryloxide pyrrolide, or a monoaryloxide chloride complex; air-stable and commercially available paraffin tablets containing a Mo complex may also be used. Alkyl, aryl, and silyl carboxylic esters as well as thiol esters and acid fluoride reagents are either purchasable or can be prepared in one step. Products were obtained in 55-95% yield and in 88:12->98:2 Z/E ratio (typically >95:5). The applicability of the approach is highlighted by a two-step conversion of citronellol to an isomintlactone precursor (1.7 g, 73% yield, and 97:3 Z/E) and a single-step transformation of lanosterol acetate to 3-epi-anwuweizic acid (72% yield and 94:6 Z/E). Included are the outcomes of DFT studies, regarding several initially puzzling catalyst activity trends, providing the following information: (1) it is key that a disubstituted Mo alkylidene, generated by a competing homo-metathesis (HM) pathway, can re-enter the productive CM cycle. (2) Whereas in a CM cycle the formation of a molybdacyclobutane is likely turnover-limiting, the collapse of related metallacycles in a HM cycle is probably rate-determining. It is therefore the relative energy barrier required for these steps that determines whether CM or HM is dominant with a particular complex.

4.
Nat Chem ; 14(6): 640-649, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35577918

RESUMO

Many therapeutic agents are macrocyclic trisubstituted alkenes but preparation of these structures is typically inefficient and non-selective. A possible solution would entail catalytic macrocyclic ring-closing metathesis, but these transformations require high catalyst loading, conformationally rigid precursors and are often low yielding and/or non-stereoselective. Here we introduce a ring-closing metathesis strategy for synthesis of trisubstituted macrocyclic olefins in either stereoisomeric form, regardless of the level of entropic assistance. The goal was achieved by addressing several unexpected difficulties, including complications arising from pre-ring-closing metathesis alkene isomerization. The power of the method is highlighted by two examples. The first is the near-complete reversal of substrate-controlled selectivity in the formation of a macrolactam related to an antifungal natural product. The other is a late-stage stereoselective generation of an E-trisubstituted alkene in a 24-membered ring, en route to the cytotoxic natural product dolabelide C.


Assuntos
Alcenos , Produtos Biológicos , Alcenos/química , Produtos Biológicos/química , Catálise , Ciclização , Estereoisomerismo
6.
Nat Chem ; 14(4): 463-473, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35177787

RESUMO

Trisubstituted alkenyl fluorides are important compounds for drug discovery, agrochemical development and materials science. Despite notable progress, however, many stereochemically defined trisubstituted fluoroalkenes either cannot be prepared efficiently or can only be accessed in one isomeric form. Here we outline a general solution to this problem by first unveiling a practical, widely applicable and catalytic strategy for stereodivergent synthesis of olefins bearing a fluoro-chloro terminus. This has been accomplished by cross-metathesis between two trisubstituted olefins, one of which is a purchasable but scarcely utilized trihaloalkene. Subsequent cross-coupling can then be used to generate an assortment of trisubstituted alkenyl fluorides. The importance of the advance is highlighted by syntheses of, among others, a fluoronematic liquid-crystal component, peptide analogues bearing an E- or a Z-amide bond mimic, and all four stereoisomers of difluororumenic ester (an anti-cancer compound).


Assuntos
Alcenos , Alcenos/química , Catálise , Estrutura Molecular , Estereoisomerismo
7.
Angew Chem Int Ed Engl ; 59(50): 22324-22348, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-32881222

RESUMO

Ethylene is the byproduct of olefin metathesis reactions that involve one or more terminal alkenes. Its volatility is one reason why many cross-metathesis or ring-closing metathesis processes, which are reversible transformations, are efficient. However, because ethylene can be converted to a methylidene complex, which is a highly reactive but relatively unstable species, its concentration can impact olefin metathesis in other ways. In some cases, introducing excess ethylene can increase reaction rate owing to faster catalyst initiation. Ethylene and a derived methylidene complex can also advantageously inhibit substrate or product homocoupling, and/or divert a less selective pathway. In other instances, a methylidene's low stability and high activity may lead to erosion of efficiency and/or kinetic selectivity, making it preferable that ethylene is removed while being generated. If methylidene decomposition is so fast that there is little or no product formation, it is best that ethylene and methylidene complex formation is avoided altogether. This is accomplished by the use of di- or trisubstituted alkenes in stereoretentive processes, which includes adopting methylene capping strategy. Here, we analyze the different scenarios through which ethylene and the involvement of methylidene complexes can be manipulated and managed so that an olefin metathesis reaction may occur more efficiently and/or more stereoselectively.


Assuntos
Alcenos/química , Estrutura Molecular , Estereoisomerismo
8.
Nat Chem ; 11(5): 478-487, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30936524

RESUMO

Nitriles are found in many bioactive compounds, and are among the most versatile functional groups in organic chemistry. Despite many notable recent advances, however, there are no approaches that may be used for the preparation of di- or tri-substituted alkenyl nitriles. Related approaches that are broad in scope and can deliver the desired products in high stereoisomeric purity are especially scarce. Here, we describe the development of several efficient catalytic cross-metathesis strategies, which provide direct access to a considerable range of Z- or E-di-substituted cyano-substituted alkenes or their corresponding tri-substituted variants. Depending on the reaction type, a molybdenum-based monoaryloxide pyrrolide or chloride (MAC) complex may be the optimal choice. The utility of the approach, enhanced by an easy to apply protocol for utilization of substrates bearing an alcohol or a carboxylic acid moiety, is highlighted in the context of applications to the synthesis of biologically active compounds.


Assuntos
Alcenos/síntese química , Técnicas de Química Sintética/métodos , Nitrilas/síntese química , Catálise , Complexos de Coordenação/química , Molibdênio/química , Estereoisomerismo
9.
Science ; 364(6435): 45-51, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30948544

RESUMO

Accessing enantiomerically enriched amines often demands oxidation-state adjustments, protection and deprotection processes, and purification procedures that increase cost and waste, limiting applicability. When diastereomers can be formed, one isomer is attainable. Here, we show that nitriles, largely viewed as insufficiently reactive, can be transformed directly to multifunctional unprotected homoallylic amines by enantioselective addition of a carbon-based nucleophile and diastereodivergent reduction of the resulting ketimine. Successful implementation requires that competing copper-based catalysts be present simultaneously and that the slower-forming and less reactive one engages first. This challenge was addressed by incorporation of a nonproductive side cycle, fueled selectively by inexpensive additives, to delay the function of the more active catalyst. The utility of this approach is highlighted by its application to the efficient preparation of the anticancer agent (+)-tangutorine.

10.
Angew Chem Int Ed Engl ; 58(16): 5365-5370, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30747464

RESUMO

An operationally simple in situ protection/deprotection strategy that significantly expands the scope of kinetically controlled catalytic Z- and E-selective olefin metathesis is introduced. Prior to the addition of a sensitive Mo- or Ru-based complex, treatment of a hydroxy- or a carboxylic-acid-containing olefin with commercially available HB(pin) or readily accessible HB(trip)2 (pin=pinacolato, trip=2,4,6-tri(isopropyl)phenyl) for 15 min is sufficient for efficient generation of a desired product. Routine workup leads to quantitative deprotection. A range of stereochemically defined Z- and E-alkenyl chlorides, bromides, fluorides, and boronates or Z-trifluoromethyl-substituted alkenes with a hydroxy or carboxylic acid group were thus prepared in 51-97 % yield with 93 to >98 % stereoselectivity. We also show that, regardless of whether a polar functional unit is present or not, a small amount of HB(pin) may be used to remove residual water, significantly enhancing efficiency.


Assuntos
Alcenos/química , Alcenos/síntese química , Catálise , Cinética , Estrutura Molecular , Molibdênio/química , Compostos Organometálicos/química , Rutênio/química , Estereoisomerismo
11.
J Am Chem Soc ; 138(2): 495-8, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26709532

RESUMO

In the past decade, direct C-H arylation of indoles has been developed with high selectivity at the C2 and C3 positions via transition-metal-catalyzed cross-coupling reactions. Here we show that C-H activation can be directed to the C7 position with high selectivity in Pd-catalyzed coupling of indoles with arylboronic acids. The key to this high regioselectivity is the appropriate choice of a phosphinoyl directing group and a pyridine-type ligand in the presence of Pd(OAc)2 catalyst. This previously elusive transformation should provide insight for the design of other cross-couplings as well.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA